INTRODUCTION
—“CARP

BY MARIUSZ ZABORSKI

is why we should look for solutions that are simple and easy to maintain and under-

stand. CARP protocol, without any doubt, is one of them. CARP stands for Common
Address Redundancy Protocol and its basic functionality is to allow multiple hosts to share a
set of IP addresses.

The CARP protocol isn't new — it was first introduced in 2003 in OpenBSD as an alterna-
tive to CISCO protocol VRRP. CARP was to replace VRRP protocol because of patent issues,
which are beyond the scope of this article. After CARP was introduced in OpenBSD, it was
later integrated into FreeBSD and NetBSD. Finally, the ucarp was introduced — a userland
implementation of CARP protocol — which brought an alternative to kernel implementa-
tions and made it available on Linux.

CARP Background

CARP allows a redundancy group — a set of hosts that share IP addresses. However,
physically, only one interface has these IP addresses assigned (it is called the active host).
In the case where an active host disappears (e.g,, it was turned off or there is some issue
with the network), other hosts in the redundancy group notice this and a new active host is
elected. This situation is shown in Figure 1. There are two machines in the redundancy group
— blue and green, but only the blue one is an active node, so other machines in the net-
work don't have an issue choosing which to connect to.

I I igh availability topics might be challenging and complicated in large networks which

Figure 1. Active and passive CARP nodes

{
192.168.0.1
Y
[\ [\
= =
= o =
o = o =
Active Standby

In CARP the active node is broadcasting its activity. This process is shown in Figure 2. Be-
cause the blue host is an active node, it is broadcasting CARP packages. The green and or-

FreeBSD Journal - September/October 2022 |5

1of 6

2 of 6

ange nodes are on standby and do not send any packages. The CARP package is quite small
and contains only minimal information like:

«vhid (Virtual server ID), the identification of the redundancy group; all machines in the

redundancy group have to share the same vhid

* Information about the CARP version and type of CARP package.

All packages in CARP are cryptographically signed, meaning each node in the redundan-
cy group has to share the secret. CARP will never send its password in plaintext to the net-
work. It is very important that every machine in the redundancy group be configured with
exactly the same set of IP addresses. These IP addresses aren't sent over the network, how-
ever — they are used to calculate the cryptographical signature.

In the case shown in Figure 2, as long as the blue server is announcing cryptographically cor-
rectly signed packages with the given vhid, the other nodes don't do anything and just listen.

N —

A:192.168.0.

Figure 2. Announcing CARP packages

s]
i

When a node stops receiving CARP packages for a while, another node decides to step
in and become an active node. This situation is shown in Figure 3. The blue node, for some
reason, stopped announcing the package, the green node noticed it, and now it has start-
ed to announce the CARP packages. When the blue node comes back, it will notice that the
green node is now an active node and it will stay passive.

Figure 3. New active node

.

A:192.168.0.

FreeBSD Journal - September/October 2022 |6

3of 6

All examples above show a single IP address in the redundancy group. However, the re-
dundancy group can have multiple IP addresses, and hosts can be in multiple redundancy
groups — this is accomplished by different vhid. Thanks to that, we can also do some kind of
load balancing among services in the network. For example, the green node can be an ac-
tive node in the redundancy group, which provides the web server service, and the blue one
can be an active node in the redundancy group, which provides the time service. If one of
the nodes disappears, the other will become an active node in the other group.

CARP and Split-brain

In a situation where two nodes notice, at the same time, that the node disappeared, both
might want to become an active node. This is called a split-brain situation, where there are
multiple active nodes. This situation might also occur when the link between the nodes is
broken, and they stop seeing packages from each other and, after a while, the situation is
fixed.

The split-brain issue is shown in Figure 4. CARP also solves this situation. When both
nosts are active, both are announcing CARP packages. The node that announces more
nackages in a shorter period of time is the preferred node to become a new master. This is
controlled in CARP with priority. Lower priority means packages are sent more often. When
the other node sees that the CARP packages are announced more often than it is doing; it
switches back to passive mode.

In the case when both nodes send packages with the same priority, the node will be cho-

sen randomly,
ﬁfmé&m

Figure 4. Split-brain situation

.’0

FreeBSD Kernel Module CARP Configuration

CARP module is included in the default FreeBSD installation. From FreeBSD 10.0, CARP
is no longer a pseudo-interface and it is configured directly on the interface. Listing 1 shows
a basic configuration of CARP. First, we have to load a FreeBSD CARP module, which is ac-
complished by k1dload(8) command. Then using ifconfig(8), we define on which in-

FreeBSD Journal - September/October 2022 |7

4 of 6

terface the CARP should work (in our case it's em0). Next, we define a redundancy group

ID (vhid is set to 1). Another important configuration is the passphrase used to calculate the
checksum; this passphrase has to be shared among all hosts in the redundancy group. In the
command, we also define the priority (or the advertisement interval). This is controlled by
two parameters: advbase (advertisement base), which is specified in seconds, and advskew
(advertisement skew — it is not shown on Listing) which is measured in 1/256 of a second.
Just as a reminder — the lower priority means the host advertises more often, which means
that it is a preferred node. Finally, we define which is the floating address.

On the same listing, we have two runs of ifconifg(8); the parts not regarding CARP
were omitted. In the first run, we can see that the redundancy group is in BACKUP state,
which means that the interface is in standby mode and listening for CARP packages. Be-
cause there are no CARP packages in the network, it is switched to the MASTER (active)
state, and the node starts to announce it. In Figure 5, we can see the captured CARP pack-
age, which is using a second static IP address for announcing the CARP packages to the

multicast IP address. So, an additional IP address besides the shared one must be config-
ured.

Listing 1. Configuration of CARP in FreeBSD

kldload carp
ifconfig emO vhid 1 pass randompass advbase 1 alias 192.168.1.50/32
ifconfig
emO:
inet 192.168.1.50 netmask Oxffffffff broadcast 192.163.1.50 vhid 1
carp: BACKUP vhid 1 advbase 1 advskew O
ifconfig
emO:
inet 192.168.1.50 netmask Oxffffffff broadcast 192.163.1.50 vhid 1
carp: MASTER vhid 1 advbase 1 advskew O
status: active

Figure 5. Captured CARP traffic using Wireshark

» Frame 3775: 70 bytes on wire (560 bits), 70 bytes captured (560 bits) on interface em@, id ©
» Ethernet II, Src: IETF-VRRP-VRID 01 (00:00:5e:00:01:01), Dst: IPv4dmcast_12 (01:00:5e:00:00:12)
» Internet Protocol Version 4, Src: 192.168.1.157, Dst: 224.0.0.18
« Version 2, Packet type 1 (Advertisement)
P01© = CARP protocol version: 2
.... 0001 = CARP packet type: Advertisement (1)
Virtual Host ID: 1
Advertisement Skew: 0
Auth Len: 7
Demotion indicator: 0O
Adver Int: 1
Checksum: 0x04bd [correct]
[Checksum Status: Good]
Counter: 10009968722567644910
HMAC: fb7f7879a6498338bee8bdf427c2b3c3a3c231dO

What might come in handy is that FreeBSD devd(8) demon allows running addition-
al scripts when the state has changed. Listing 2 shows an example of such a configuration
from the FreeBSD man page. When the redundancy group changes its state, the /root/
carpcontrol.sh script will be executed. The first parameter will be vhid@inet, and the
second parameter will be the current state of the group.

FreeBSD Journal - September/October 2022 (8

Listing 2. devd(8) configuration for CARP

notify 0 {
match "system" "CARP";
match "subsystem" "[0-9]+@[0-9a-z.]+";
match "type" "(MASTER|BACKUP)";

action "/root/carpcontrol.sh $subsystem $type";

Additionally, a very promising project was a ucarp, the userland implementation of
CARP protocol. It reduced the amount of code in the kernel space. Also, in the case of ker-
nel space implementation, that might be slightly different. In this case, the code base was
shared by multiple platforms. However, the project seems to have been abandoned--the
GitHub project is closed, and the ucarp domain has expired. However, you can still find a
ucarp distributed on different operating systems, so if you are looking for cross platform
implementation, we still recommend you take a look at that project.

The configuration options are quite similar to the kernel implementations. Listing T shows
how to install ucarp on a FreeBSD box. The next line shows its basic usage. Most options are
self-explanatory at this point. Let's look into the upscript and downscript options. Be-
cause the ucarp was designed as a multiplatform tool, it doesn’t know how to add an IP ad-
dress to the interface — this responsibility was moved to the administrator. The user has to
define his/her own scripts that add the IP addresses to the right interface.

Listing 3. Basic usage of ucarp

pkg install carp
ucarp --interface=eth0 —--srcip=192.1638.1.157 --vhid=1 —--pass=randompass
-—-addr=192.168.1.50 -—-upscript=up.sh —--downscript=down.sh

Another small caveat about ucarp is that we can define only one single floating IP ad-
dress for the protocol. We can add many IP addresses in the upscript and downscript;
however, only one (from parameter addr) will be added to the cryptographic signature. This
means if we would like to mix the kernel and userland CARP implementations, it won't work
with multiple floating addresses in the single redundancy group, because the checksum
won't match.

Carp is a simple but very powerful tool that allows us to provide high availability in our
network. There are two major CARP implementations: the kernel space (which each BSD
operating system has) and one userland ucarp which is a cross-platform (and also works on
Linux). Unfortunately, the userland implementation seems to have been abandoned. How-
ever, it you are looking for an easy and simple solution that will provide you with a floating
address, you should still consider its use.

FreeBSD Journal - September/October 2022

5of 6

Bibliography
« CARP on Wikipedia —

6 of 6

https:.//enwikipedia.org/wiki/Common Address Redundancy Protocol

« UCARP GitHub Project — https:./github.com/jedisctl/UCarp

* CARP in FreeBSD Handbook —

https.//docs freebsd.org/en/books/handbook/advanced-networking/#carp

« CARP FreeBSD man page —

https:.//www.freebsd.org/cgi/man.cgi?’query=carp&sektion=4

Acknowledgment

Figures in this article use resources from flaticon.com

MARIUSZ ZABORSKI currently works as a security expert at 4Prime. He has been the proud
owner of the FreeBSD commit bit since 2015. His main areas of interest are OS security and
low-level programming. In the past, Mariusz worked at Fudo Security, where he led a team de-
veloping the most advanced PAM solution in IT infrastructure. In 2018, he organized the Polish
BSD user group. In his free time, Mariusz enjoys blogging at https:/oshogbovexillium.org.

@® FreeBSD

The FreeBSD Project is looking for

* Programmers - Testers
+ Researchers + Tech writers
+ Anyone who wants to get involved

Find out more by
Checking out our website
freebsd.org/projects/newbies.htm|

Downloading the Software
freebsd.org/where.ntml

We're a welcoming community looking
for people like you to help continue

developing this robust operating system.

Join us!

Already involved?

Don't forget to check out the latest
grant opportunities at
freebsdfoundation.org

Help Create the Future.
Join the FreeBSD Project!

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.

Not only is FreeBSD easy to install, but it runs a huge number
of applications, offers powerful solutions, and cutting edge
features. The best part? It's FREE of charge and comes with
full source code.

Did you know that working with a mature, open source
project is an excellent way to gain new skills, network

with other professionals, and differentiate yourself in a
competitive job market? Don't miss this opportunity to work
with a diverse and committed community bringing about a
better world powered by FreeBSD.

The FreeBSD Community is proudly supported by

Fr?eBSD

FOUNDATION

FreeBSD Journal - September/October 2022 |10

