
5FreeBSD Journal • November/December 2022

DDB is an interactive kernel debugger that can be used to inspect system state and
control the running kernel. DDB was first developed as part of the Mach oper-

ating system. It was later ported to 386BSD from which it was inherited by various operating
systems including FreeBSD, NetBSD, and OpenBSD. This article focuses on the implemen-
tation of DDB in FreeBSD.

DDB runs on the system console, and system execution is suspended while the debug-
ger is active. This permits inspection of the system in a consistent state. DDB can be en-
tered manually, but DDB is typically used after a kernel panic. FreeBSD’s kernel can be
configured to enter DDB after a kernel panic permitting a user or system administrator to
examine the system state before rebooting. Debugging kernels built from FreeBSD’s main
branch do this by default.

 DDB provides many features common to debuggers. It supports run control such as sin-
gle stepping and breakpoints, and also supports hardware watchpoints on platforms with
suitable hardware support. DDB includes several commands to display information about a
system including stack traces and memory dumps.

 Unlike many other debuggers, DDB does not understand type information and is not
able to pretty-print structures or evaluate members of structures or unions in expressions.
However, DDB can be extended by defining new commands. New commands can even be
implemented in kernel modules which can be loaded after boot.

DDB Execution Context
DDB executes in a special context which differs from the normal kernel execution con-

text in several ways:
•	When DDB is active, the system is paused and borrows the execution context of the

currently executing thread on each CPU. The normal kernel scheduler does not func-
tion in this context and the borrowed threads on each CPU are not permitted to con-
text switch. This means that code execution in this context must not sleep or block on
locks.

•	If a fault or trap occurs during execution of a DDB command, the current thread will use
longjmp() to resume execution in DDB’s main loop.

•	DDB accesses console devices directly for console input and output.

BY JOHN BALDWIN

Writing Custom Commands
in FreeBSD’s DDB Kernel Debugger

1 of 8

6FreeBSD Journal • November/December 2022

 Due to these unique behaviors, implementations of DDB commands should adhere to
the following guidelines:

•	Commands should avoid side effects. If a fault occurs during command execution,
there is no way to undo any side effects. The safest approach is to avoid side effects
when possible.

•	Commands should not use locks. Since execution is paused on all CPUs, the state of
most data structures in the system will not be changing, so locks are not needed to syn-
chronize with other CPUs. In addition, acquiring a lock is a side effect that will not be
unwound if a command faults while holding a lock. In exceptional cases, where a com-
mand wishes to modify system state in a safe way, a command may use try locks. One
command which does this currently is the kill command which can send a signal to a
process.

•	Commands should avoid complicated APIs. Higher level APIs often modify system state
or contain other side effects such as acquiring locks.

•	Most commands in DDB inspect system state without modifying it and output a hu-
man readable description of some portion of system state. Many of these commands
are pretty-printers which print information about a specific data structure or list of
structures.

•	Commands must use DDB’s APIs for console input and output. Mostly this means using
db_printf() for output instead of printf().

DDB provides a simple API for console output. The db_printf() function is similar to
the normal kernel printf() and supports all of the same format specifiers. This function
writes directly to console devices bypassing the system log device.

 In addition, db_printf() includes simple pager support. Each time a newline is output
to the console, db_printf() checks if the output should be paused. If so, db_printf()
outputs a prompt on the console permitting the user to control how many lines are dis-
played before the next pause. Once the user has responded to the prompt, db_printf()
returns. If the user requests the current command to quit (stop generating output), db_
printf() sets the global variable db_pager_quit to a non-zero value. If a command gen-
erates output in a loop (for example, using a loop to walk a linked-list of data structures), the
command should check db_pager_quit in each loop iteration and break out of the loop
early if it is set.

Command Functions
Most DDB commands follow a simple syntax described in ddb(4):

command[/modifier] [address[,count]]

When a user enters a command at DDB’s prompt, DDB parses this command line. The
address and count fields are treated as expressions which can contain references to named
symbols and many C arithmetic operators. The command and modifier fields are treated
as simple strings. DDB uses the command field to locate a pointer to a C function. This C
function is invoked to execute the command.

 The functions implementing DDB commands use the following signature:

void fn(db_expr_t addr, bool have_addr, db_expr_t count, char *modif)

2 of 8

https://man.freebsd.org/ddb/4

7FreeBSD Journal • November/December 2022

The addr argument contains the address the command should operate on. This can ei-
ther be an explicitly-provided address or the address used with the previous command. The
have_addr argument is true if the address was provided explicitly. The count argument
contains the value of the count field. If the count field was not specified, count is set to -1.
The modif argument is a pointer to a C string containing the modifier field. If a modifier
was not specified, then modif will point to an empty string.

Command functions are associated with command names via internal tables main-
tained by DDB. DDB provides helper macros to abstract most of the details of registering
new commands. Each macro accepts two arguments: the first argument is the name of the
command, and the second argument is the name of the C function to associate with the
named command. In addition to registering the linkage in the table, these macros also pro-
vide the C function declaration and should be immediately followed by the function body.
Each macro is associated with a specific command table. The DB_COMMAND macro defines
a new top-level command. The DB_SHOW_COMMAND macro defines a new command in the
“show” table. The DB_SHOW_ALL_COMMAND macro defines a new command in the “show all”
table. For example DB_SHOW_COMMAND(bar, db_show_bar_func) defines a new “show
bar” command. It also defines a new C function, db_show_bar_func, which provides the
implementation of this command. It is best practice, but not required, to name the C func-
tions associated with a command using the pattern db_<command>_cmd.

 Listing 1 is the source to a simple command named “double”. This command multiplies
the address provided by the user by 2 and outputs the result. Listing 2 shows some use cas-
es of this command. The output from the third case may be surprising, as 32 times 2 is cer-
tainly not 100. The reason for this behavior is that DDB parses integer values with a default
base of 16 (controlled by DDB’s internal $radix variable). In base 16, 32 evaluates to the
decimal value of 50.

DB_COMMAND(double, db_double_cmd)
{
	 if (have_addr)
		 db_printf(“%u\n”, (u_int)addr * 2);
	 else
		 db_printf(“no address\n”);
}

Listing 1: Source for the “double” command

db> double
no address
db> double 4
8
db> double 32
100

Listing 2: Sample output for the “double” command

Commands with Custom Syntax
DDB commands do not have to use the simple syntax given above. Command functions

can choose to support other syntaxes. Commands request this by passing an additional flag

3 of 8

8FreeBSD Journal • November/December 2022

when registering commands. A separate set of macros accept command flags as a third
argument: DB_COMMAND_FLAGS, DB_SHOW_COMMAND_FLAGS, and DB_SHOW_ALL_COMMAND_
FLAGS.

Two flags are available to control command line parsing. CS_MORE indicates that a com-
mand mostly follows the simple syntax, but that the command supports more than one ad-
dress. When this flag is specified, the main loop of DDB will still parse the command line as
normal, but it will not discard any remaining tokens from its lexer before invoking the com-
mand function. This allows the command function to parse additional options on the com-
mand line. The second flag, CS_OWN, indicates that the command function performs all of
the parsing itself. When this flag is specified, the main loop of DDB stops parsing the com-
mand line after reading the name of the command. The command function uses DDB’s
lexer to parse the rest of the command line. Regardless of which flag is specified, the com-
mand function must call db_skip_to_eol() to discard remaining tokens from the current
command line before returning.

DDB provides a few functions to parse command line arguments. db_expression()
parses an arithmetic expression. This can consume multiple words of input and supports the
full DDB expression syntax including symbol resolution and various C operators. If no more
command line arguments were available, db_expression() returns 0. If an expression was
successfully parsed, then db_expression() returns a non-zero value and stores the re-
sult of the expression in the value pointed to by its sole argument. If db_expression()
encounters a syntax error while parsing an expression, it prints a message and aborts the
current command via longjmp(). Command functions should avoid any side effects while
calling db_expression() since they can’t be unwound if the user provides invalid input.

Two other functions provide a lower level interface to DDB’s lexer. db_read_token()
parses the next token from the command line and returns a constant identifying the type
of token parsed. The constants are named t<TYPE> and are defined in <ddb/db_lex.h>.
Most of the constants are associated with C operators and other special tokens, but a few
are useful for custom commands. tEOL is returned when the end of the command line is
encountered. tEOF is returned for invalid input such as a number that contains invalid char-
acters. tIDENT is returned when a word (identifier) is parsed. A copy of the word is saved in
the global variable db_tok_string. tNUMBER is returned when a numeric value is parsed.
The value is saved as an integer in the global variable db_tok_number. Note that DDB’s lex-
er assumes that any word beginning with a decimal digit is a number, and that any word be-
ginning with an alphabetic character, underscore, or backslash is an identifier. db_unread_
token() inserts a single token to be returned by the next call to db_read_token(). The
value passed to db_unread_token() is one of the t<TYPE> constants. Normally this func-
tion is used to put back the token just read from db_read_token() if the returned token
was invalid or unexpected.

DDB provides two additional functions to handle parsing errors. db_error() prints out a
caller-supplied message, flushes the lexer state, and invokes longjmp() to abort the current
command and return to DDB’s main loop. db_flush_lex() just flushes the lexer state dis-
carding the current command line. db_flush_lex() can be used if a more detailed error
message is desired or to unwind additional state if longjmp() is undesirable.

Listing 3 is the source to a command named “sum”. This command computes a sum of all
of the expressions given on the command line. It uses the CS_MORE flag and uses db_ex-
pression() in a loop to parse additional expressions from the command line. Listing 4

4 of 8

9FreeBSD Journal • November/December 2022

shows some sample output from this command. Note that in the third case, db_expres-
sion() parsed the expression “9 * 3” and returned the value 27 to the loop in db_sum_
cmd().

DB_COMMAND_FLAGS(sum, db_sum_cmd, CS_MORE)
{
	 long total;
	 db_expr_t value;

	 if (!have_addr)
		 db_error(“no values to sum\n”);

	 total = addr;
	 while (db_expression(&value))
		 total += value;
	 db_skip_to_eol();
	 db_printf(“Total is %lu\n”, total);
}

Listing 3: Source for the “sum” command

db> sum 1
Total is 1
db> sum 1 2 3
Total is 6
db> sum 9 * 3 4
Total is 31

Listing 4: Sample output for the “sum” command

Listing 5 contains the source to a “show softc” command. This command accepts the
name of a device as a single command line argument. If the device is found, the command
prints out the value of the pointer to the device’s softc structure. This structure contains
the per-device information maintained by the device’s driver. This command uses the
CS_OWN flag to request full control of command line parsing. It uses db_read_token() to
fetch the device name from the command line. If a valid device name is given, a tIDENT to-
ken will be returned with the device name saved in db_tok_string. Listing 6 shows some
sample output for this command.

DB_SHOW_COMMAND_FLAGS(softc, db_show_softc_cmd, CS_OWN)
{
	 device_t dev;
	 int token;

	 token = db_read_token();
	 if (token != tIDENT)
		 db_error(“Missing or invalid device name”);

5 of 8

10FreeBSD Journal • November/December 2022

	 dev = device_lookup_by_name(db_tok_string);
	 db_skip_to_eol();
	 if (dev == NULL)
		 db_error(“device not found\n”);
	 db_printf(“%p\n”, device_get_softc(dev));
}

Listing 5: Source for the “show softc” command

db> show softc 4
Missing or invalid device name
db> show softc foo0
device not found
db> show softc pci0
0xfffff800039380f0

Listing 6: Sample output for the “show softc” command

Custom Command Tables
A DDB command table contains a list of commands. Additional tables can be defined

by a special command in an existing table. This permits building a tree of command tables.
Commands that define new tables do not specify a function to use as their command han-
dler. Instead, tables must define and initialize a variable of type struct db_command_table
which will contain a linked-list of commands belonging to the table. A pointer to this table is
associated with the command entry in the parent table. This variable should be named us-
ing the pattern db_<name>_table. At the time of writing, there are not nicely abstracted
macros similar to DB_COMMAND which permit defining new tables. Instead, new tables must
be defined using an “internal” macro _DB_SET. Commands belonging to this table must ei-
ther be defined by the “internal” macro _DB_FUNC or by defining a new helper macro simi-
lar to DB_SHOW_COMMAND which wraps _DB_FUNC.

Listing 7 contains the source for a “demo” table along with two commands belonging to
this table. The listing starts by defining a db_demo_table variable to contain the list of DDB
commands belonging to the new table. The _DB_SET invocation adds the “demo” com-
mand to the top-level table similar to DB_COMMAND. Note that the third argument to _DB_
SET (which normally contains a pointer to the function handler) is NULL, but that the last ar-
gument to _DB_SET contains a pointer to the new table. The rest of the listing defines two
simple commands belonging to this new table. The second and third arguments to _DB_
FUNC are similar to the two arguments given to DB_COMMAND. The fourth argument identi-
fies the parent table the new command belongs to. The fifth argument contains flags such
as CS_MORE or CS_OWN, and the final argument should be NULL. The first argument to both
_DB_SET and _DB_FUNC should be the name of the parent table with a leading underscore
and any spaces replaced by underscores. If the parent table is the main table, use “_cmd”.
Listing 8 shows sample output for these commands.

/* Holds list of “demo *” commands. */
static struct db_command_table db_demo_table = LIST_HEAD_INITIALIZER(db_demo_table);

6 of 8

11FreeBSD Journal • November/December 2022

/* Defines a “demo” top-level command. */
_DB_SET(_cmd, demo, NULL, db_cmd_table, 0, &db_demo_table);

_DB_FUNC(_demo, one, db_demo_one_cmd, db_demo_table, 0, NULL)
{
	 db_printf(“one\n”);
}

_DB_FUNC(_demo, two, db_demo_two_cmd, db_demo_table, 0, NULL)
{
	 db_printf(“two\n”);
}

Listing 7: Source for the “demo” table commands

db> demo
Subcommand required; available subcommands:
one two
db> demo one
one
db> demo two
two

Listing 8: Sample output for the “demo” table commands

Pager-Aware Command
Our last sample command provides an example of honoring DDB’s output pager. Most

pager operations such as continuing for a page or for a single line are handled internally by
the pager implementation in db_printf(). However, if the user requests that the pager
stop, the global variable db_pager_quit is set to a non-zero value as noted earlier. Com-
mands which generate output in a loop should check this variable and abort any loops if it is
set. Listing 9 contains an abbreviated sample command which checks db_pager_quit. The
command is an implementation of the Internet “chargen” service. It generates lines of out-
put to the screen in a continuous loop until the user terminates the loop by requesting an
exit via the pager. The main takeaway from this listing are the last two lines of the main loop
which break out of the loop if db_pager_quit is set.

DB_COMMAND(chargen, db_chargen_cmd)
{
	 char *rs;
	 int len;

	 for (rs = ring;;) {
			 …
		 db_printf(“\n”);
		 if (db_pager_quit)

7 of 8

12FreeBSD Journal • November/December 2022

			 Break;
	 }
}

Listing 8: Abbreviated source for the “chargen” command

Conclusion
DDB provides a fairly simple framework for adding new commands. New commands

can even be added post-boot by loading kernel modules containing new commands. There
are many examples of custom commands in FreeBSD’s source tree which can also be used
as a reference when developing new commands. These can be found by searching for
DB.*_COMMAND or db_printf. In addition, a kernel module containing all of the commands
from this article can be found at https://github.com/bsdjhb/ddb_commands_demo.

JOHN BALDWIN is a systems software developer. He has directly committed changes to
the FreeBSD operating system for over twenty years across various parts of the kernel (in-
cluding x86 platform support, SMP, various device drivers, and the virtual memory subsys-
tem) and userspace programs. In addition to writing code, John has served on the FreeBSD
core and release engineering teams. He has also contributed to the GDB debugger. John
lives in Concord, California with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

8 of 8

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

https://github.com/bsdjhb/ddb_commands_demo

