
22FreeBSD Journal • November/December 2022

Icinga is the successor to the popular Nagios host and service-monitoring software.
With the aim of being a drop-in replacement with backwards compatibility to Nagios,
Icinga also provides a couple of new features. This article describes how to set up a cen-
tral Icinga host to monitor endpoint systems using certificates in a top-down configura-

tion sync fashion.
Top-down describes the way that the checks (disk

full, load-avg too high, etc.) execute on the remote
machines. In top-down monitoring, the central Icin-
ga host called parent is responsible for synchronizing
the configuration files to the monitored nodes called
child nodes. No manual restart after a configuration
change is required on these child nodes, as syncing,
validation, and restarts happen automatically. Checks
execute directly on the child node scheduler in regu-
lar intervals. Hosts are organized in a global zone and each host (parent and children) is de-
fined as an endpoint in it. Each child will have to verify that it is part of the monitoring zone
by creating a certificate signing request in a ticket which the parent will then verify and sign.
This creates trust that the machines communicate in an encrypted way and that the moni-
toring data received on the parent is not manipulated in transit.

The setup described here uses FreeBSD as parent to monitor another FreeBSD host
as child. Of course, other operating systems such as Linux or Windows are possible in the
same way, but not covered as part of this already long description. Although the setup is de-
scribed to run on the host itself to reduce complexity, the author has it happily running in a
jail—so far without issues.

Preparation
We assume that all our hosts are installed, can find each other on the same network, and

have a basic SSH connection going on between them. Our central monitoring server will
be called monitor.example.org and the client we’re going to set up later is called client.
example.org (you see my creative naming choices right there). The prompts used in front
of the commands will indicate on which host this command is to be executed. Let’s start
with preparing our central monitoring host (the parent).

Ensure that clocks on the machines are synchronized. This is important for proper genera-
tion of certificates later. This is typically done using monitor# ntpdate -b pool.ntp.org.

On this central FreeBSD host, we want to use the latest version of Icinga and other pack-

BY BENEDICT REUSCHLING

This article describes
how to set up a central
Icinga host to monitor
endpoint systems using
certificates.

Certificate-based
		 Monitoring
	 with Icinga

1 of 14

23FreeBSD Journal • November/December 2022

ages, instead of the quarterly ones. Edit /etc/pkg/FreeBSD.conf and change the word
quarterly to latest in the line starting with url:. Save and exit afterwards. To update the pack-
age repository with the newer packages, run:

monitor# pkg update

PostgreSQL Setup
Before installing the required software packages (including PostgreSQL as the backend

database and nginx for the webserver to host the Icingaweb2 monitoring interface), we’re
creating a ZFS dataset for the postgres database first to get populated when the packages
extract. If you don’t run ZFS, this also works fine with regular directories.

The following commands create a new dataset on our example pool called mypool a
/var/db/postgres/data. Non-existent datasets on that path are also created using the
-p parameter. Next, access time is deactivated as we don’t need it here and it saves some
I/O by not updating timestamps of files at every write. With newer ZFS 2.0, we also use
the zstd compression on the dataset. As Postgres writes data in chunks of 8k, we set the
ZFS recordsize to match for best performance. With logbias set to throughput, we in-
struct ZFS to optimize synchronous writes from the database for efficient resource use. The
mountpoint is set to overlap the existing /var/db/postgres path. When the package gets
installed, it is put on that dataset instead of the regular /var/db directory. Note: we don’t fo-
cus on further tuning of the PostgreSQL database here. Go to https://pgtune.leopard.in.ua/
and enter the values of your PostgreSQL host to get configuration recommendations to put
into the postgresql.conf file.

monitor# zfs create -p mypool/var/db/postgres/data
monitor# zfs set atime=off mypool/var/db
monitor# zfs set compression=zstd mypool/var/db
monitor# zfs set recordsize=8k mypool/var/db/postgres
monitor# zfs set logbias=throughput mypool/var/db/postgres
monitor# zfs set mountpoint=/var/db/postgres mypool/var/db/postgres

Now it is time to install the required packages. Easily done using pkg install, including au-
tomatic dependency resolution:

monitor# pkg install icinga2 icingaweb2-php74 postgresql13-server nginx \
ImageMagick7-nox11 php74-pecl-imagick-im7

Note: at the time of this writing, these package versions were the latest available. Check to
make sure that is still the case by going to www.freshports.org to see if there are newer pack-
age versions listed. PHP, in particular, may have gotten a version bump in the meantime.

Some of these services need entries in /etc/rc.conf to start when the system boots.
These include the following:

monitor# sysrc sshd_enable=yes
monitor# sysrc icinga2_enable=yes
monitor# sysrc postgresql_enable=yes

2 of 14

https://pgtune.leopard.in.ua/
http://www.freshports.org

24FreeBSD Journal • November/December 2022

Note that the services have not started yet, as some configuration is required before that
can happen. Along with the postgres package came the system user and group of the same
name, which is why setting permissions on /var/db/postgres is possible now.

monitor# chown -R postgres:postgres /var/db/postgres

The PostgreSQL database cluster is initialized next by running initdb as the postgres
user with UTF-8 as encoding. Note that the postgres user needs to execute these com-
mands, although there is now a way to do this via the service command (sometimes I’m old
fashioned).

monitor# su postgres
postgres@monitor$ initdb -D /var/db/postgres/data -E UTF8”

After a successful initialization of the database cluster, the server is started using pg_ctl:

postgres@monitor$ pg_ctl start -D /var/db/postgres/data

Next up is the creation of the Icinga role and database, which will later load some initial
tables and sequences that form the monitoring backend.

postgres@monitor$ createuser -drs icinga
postgres@monitor$ createdb -O icinga -E UTF8 icinga

Entries in pg_hba.conf (in the data directory) like the following allow the just created Ic-
inga user access to the database via localhost (no need to expose it to the network for Icin-
ga to work properly):

 local icinga icinga md5
 host icinga icinga 127.0.0.1/32 md5

Load database schema definition for Icingaweb2 as well as those for the IDO (Icinga data
objects) into the database now:

postgres@monitor$ psql -U icinga \
 -d icinga < /usr/local/share/icinga2-ido-pgsql/schema/pgsql.sql

Log out of the postgres user and continue the rest of the setup. On the Icinga side, fea-
tures control the functionality of the monitoring system. This includes which database back-
end is used. To enable PostgreSQL as the backend for the IDO, run the following command:

monitor# icinga2 feature enable ido-pgsql

In some cases, not all files and directories are owned by the Icinga system user. Running
chown over the main icinga2 directory ensures the permissions are properly set.

3 of 14

25FreeBSD Journal • November/December 2022

monitor# chown -R icinga:icinga /usr/local/etc/icinga2

This concludes the database part of the setup. We’ll continue with the webserver setup.
Although nginx is used here, other webservers like Apache2 are also perfectly fine to use.
The Icinga documentation shows the necessary steps for that, too.

Nginx Setup
Icinga’s web interface (aptly named Icingaweb2 since it is version 2) is a PHP application to

manage hosts and services from the comfort of your browser. Events concerning any failed
checks are also shown there and you can acknowledge problems or define downtimes at a
central location. To configure the PHP fastCGI process manager (php-fpm) to handle re-
quests coming from the webserver, enable the following options located in /usr/local/
etc/php-fpm.d/www.conf:

monitor# cd /usr/local/etc/php-fpm.d
monitor# sed -i “” 's/^;listen = 127.0.0.1:9000/listen = /var/run/php5-fpm.sock/’
www.conf
monitor# sed -i “” 's/^;listen.owner/listen.owner/' www.conf
monitor# sed -i “” 's/^;listen.group/listen.group/' www.conf
monitor# sed -i “” 's/^;listen.mode/listen.mode/' www.conf

This basically uncomments lines that are in the file already to activate them and replac-
es the listen directive to use the local php5 socket instead of opening a port on the host for
it. The major webserver configuration is done in the nginx.conf file located in /usr/local/
etc/nginx, where we reference the fastCGI socket, among other things. The following
configuration block is inserted after the commented #access_log line.

location ~ ^/icingaweb2/index\.php(.*)$ {
	 fastcgi_pass unix:/var/run/php5-fpm.sock;
	 fastcgi_index index.php;
	 include fastcgi_params;
	 fastcgi_param SCRIPT_FILENAME /usr/local/www/icingaweb2/public/index.php;
	 fastcgi_param ICINGAWEB_CONFIGDIR /usr/local/etc/icingaweb2;
	 fastcgi_param REMOTE_USER $remote_user;
}

location ~ ^/icingaweb2(.+)? {
	 alias /usr/local/www/icingaweb2/public;
	 index index.php;
	 try_files $1 $uri $uri/ /icingaweb2/index.phpis_argsargs;
}

Note that this does not contain an SSL section to keep this tutorial simple. It is definitely
recommended (and pretty much standard practice nowadays) to generate a certificate for
the webserver and configure port 443 for the secure channel configuration. The web is full
of tutorials for it and services like Let’s Encrypt make the process easy and convenient.

4 of 14

26FreeBSD Journal • November/December 2022

When the packages were installed, a file containing PHP settings meant for production
use was created in /usr/local/etc/php.ini-production. These settings are fine for our
purposes, and we activate them by copying them to be our new php.ini file:

monitor# cp /usr/local/etc/php.ini-production /usr/local/etc/php.ini

With this file as a base PHP configuration, we only have to replace the timezone informa-
tion in it. I use this sed one-liner to place my installation within central Europe. Use whatever
fits your location best:

monitor# cd /usr/local/etc
monitor# sed -i “” s,;date.timezone =,date.timezone = Europe/Berlin, php.ini

We replaced the regular sed divider / with a comma here to not confuse it with the sep-
arator between region and city. See, I’ll smuggle some sed tricks into my tutorials for you
as well. Thank me later... Oh by the way, this is all that is needed for the basic serving of icin-
gaweb2 to end-users. We will now focus our attention on the Icinga configuration.

Icinga Monitoring Setup
Icinga uses various ways to monitor systems and is quite flexible about different monitor-

ing environments and needs. For example, a host may not be available all the time (roam-
ing user) or not have a direct connection to the central monitoring host. In the latter cas-
es, satellite systems can relay monitoring data and check results from a different network
or subnet to the central instance. In the setup that we use here, the central instance (called
master) controls the execution of checks on the monitored systems. Trust is established by
certificates exchanged between the master and clients. A zone defines either a geograph-
ic location (Europe, Africa, etc.) where monitoring happens or some other kind of logical
grouping that makes sense in our monitoring context. For example, a whole plant, office,
server room, rack, etc. could each form their own zone. Surely, a DNS zone is also possible,
whatever is most useful to monitor as a whole or based on some common criteria.

First, we generate the master certificate, which we will use to monitor the central in-
stance itself and as a base of trust for adding other monitored clients further down this tu-
torial. The setup is typically interactive, but here we pass all the necessary parameters on the
command line:

monitor# icinga2 node setup --master --zone “my-zone” \
 --cn monitor.example.com \
 --listen monitor.example.com,5665 --disable-confd”

Here, the certificate for our central host monitor.example.com is generated and we in-
struct Icinga to not populate the conf.d subdirectory in /usr/local/etc/icinga2. We
are going to create those files ourselves anyway.

Both the zone and cn are up to you to name based on your local requirements. Port
5665 should be open on your firewall to allow contacting the clients and sending the check
result back. Next, we change into the directory /usr/local/etc/icinga2 and create a
couple of files and directories:

monitor# cd /usr/local/etc/icinga2

5 of 14

27FreeBSD Journal • November/December 2022

monitor# mkdir conf.d

We define an API user that has the permissions to generate a ticket through which the
monitored clients request becoming part of the monitoring zone. The master will then allow
or deny the ticket request and sign the client certificate with its own to establish a secure,
trusted connection between the two.

The api-users.file contains the following:

object ApiUser “client-pki-ticket” {
	 password = “randomstringthatmustbechanged”
	 permissions = [“actions/generate-ticket”]
}

Definitely change the password line to a random string consisting of random numbers
and characters, the longer the better. Next, a zones subdirectory in the /usr/local/etc/
icinga2 directory is created that holds all the information to distribute to all members of
this zone. Typical examples are check information and monitoring intervals that the clients
will receive from the central monitoring instance. That way, the clients need no extra local
configuration, and the system administrator needs only to change the central zone config-
uration, which will then propagate securely to all the hosts. Since our zone is called my-zone
(creativity is clearly my thing), we create a subdirectory that holds only the relevant informa-
tion for clients in that zone. Other zones can be completely different, yet the monitoring
configuration is located at a central place instead of each host that makes up the zone.

monitor# mkdir -p /usr/local/etc/icinga2/zones.d/my-zone

Our zones contain various information: the hosts to monitor, what to monitor (i.e., which
checks to execute on each host), the monitoring intervals (how often), etc. We’re starting
with defining the central monitoring master in a file called /usr/local/etc/icinga2/
zones.d/my-zone/hosts.conf. For our master, it looks like this:

object Host “monitor.example.com” {
	 import “generic-host” // import generic settings for all hosts
	 address = “monitor.example.org”
	 vars.os = “FreeBSD”

	 //follow convention that host name == endpoint name
	 vars.agent_endpoint = name
}

Each host is defined as a host object and an address where it is reachable on the net-
work. We also define a variable by which we can filter out specific hosts in Icingaweb2 for
grouping purposes or define checks only for certain hosts matching these criteria. This is
shown later.

The import “generic-host”-line is where we reference a template. Templates help us
apply common settings to all hosts without having to redefine them for each host add-
ed to the file. For example, each host should have the same check interval (how often it is

6 of 14

28FreeBSD Journal • November/December 2022

checked) and other similar settings. It makes this file smaller by avoiding repetitions and dif-
ferent hosts may use other template settings or override them with their own that are only
valid for this special system.

The templates.conf file is located within the zones.d/my-zone directory and looks
like this:

template Host “generic-host” {
	 max_check_attempts = 5
	 check_interval = 2m
	 retry_interval = 30s
	 enable_flapping = true
	 check_command = “hostalive” //check is executed on the master
}

template Service “generic-service” {
	 max_check_attempts = 5 // re-check 5 times before HARD state
	 check_interval = 2m
	 retry_interval = 1m
	 enable_flapping = true
}

Two templates are defined here for generic hosts and services. In total, hosts and ser-
vices are checked five times before an alert is generated. This is to avoid occasional packet
loss or slow reacting equipment or processes, but that are generally working. The check_
interval defines how many times the checks are executed, while the retry_interval
defines when to check again after one check did not return in an OK-state. Definitely play
around with these intervals to fit your monitoring needs. Remember that the more often
you monitor, the more traffic is generated, and the data returned by the checks needs to be
stored in the database, gradually making it bigger the longer you monitor.

A flapping state can happen when a host or service seems to be available, then next time
it is unavailable, then available again and so on (changing rapidly between states, without
seeming to become stable). Icinga is capable of detecting those states by comparing the
last known state with the current one over a period of time. These flapping states are not
enabled by default but are valuable information for someone debugging a problem that
only happens during certain load times or busy activity. An erratic host behaving that way
shows up in Icinga and should be investigated further for the root cause. The problem may
also originate in the network itself, so rule out any other influences that might be responsi-
ble. A check_command defines which check from the ones Icinga provides needs to run by
default. The hostalive command is basically a ping in disguise, checking to see if a host is
reachable. The reason that this is only defined in the generic-host template is because ser-
vices usually define a different check_command that fits the service and can’t be easily gen-
eralized with a template.

Now that we have templates for common functionality in place, it is time to define which
checks our monitoring should run and on which hosts. They are defined in the zones.d/
my-zone/services.conf file. Here is my definition to check the disk space:

7 of 14

29FreeBSD Journal • November/December 2022

apply Service “disk” {
	 import “generic-service”
	 check_command = “disk”

// Specify remote agent as command execution endpoint, fetch host custom variable
	 command_endpoint = host.vars.agent_endpoint

// Only assign where a host is marked as agent endpoint
	 assign where host.vars.agent_endpoint
}

Applying a service means assigning it to a particular target, either a host or the result of
an expression. In this example, we define that all hosts that are defined as endpoints should
have the disk check running. The execution of the check is happening on the host itself,
called an active check. A passive check would be running on the central monitoring in-
stance, trying to reach the remote system, run the check, and fetch the result. Both active
and passive checks can be defined for a host or target. Both have their pros and cons, but in
a simple monitoring setup such as this, it is a good start to use the services that come with
Icinga.

Icinga provides these common services as checks: disk, load, users, swap, procs, ping, and
ssh. These provide a good initial basis for monitoring to see if swap space is low, the disk is
filling up, the load is extremely high, or that there are suddenly 200 users logged in (which
may or may not be normal).

A special check is to test whether our remote endpoint system is still available within the
defined zone. For that, we can extend the services.conf file we just created to contain
the following agent health check:

apply Service “agent-health” {
	 check_command = “cluster-zone”

	 display_name = “cluster-health-” + host.name

// Follow convention: agent zone name is FQDN same as host object name.
	 vars.cluster_zone = host.name

	 assign where host.vars.agent_endpoint
}

In addition to running the cluster-zone check command (which we don’t have to know
too much about to use it), we also see how a different check description is displayed in
the Icingaweb2 interface by defining display_name. With this, we can see at a glance the
name of the monitored system, prefixed by the string “cluster-health”.

The internal Icinga database (IDO) may also fail, so it is good to monitor it as well (re-
member to watch the watchers). Even though newer Icinga versions are doing away with the
IDO altogether, replacing it with a database on its own, small installations are perfectly fine
to still use the IDO. The checks for our IDO based on PostgreSQL are defined like this (again
in services.conf):

8 of 14

9 of 14

30FreeBSD Journal • November/December 2022

object Service “ido” {
		 check_command = “ido”
		 vars.ido_type = “IdoPgsqlConnection”
		 vars.ido_name = “ido-pgsql”
		 host_name = NodeName
}

We don’t even need to apply this to any host, as this check only runs where the Icinga
IDO database is installed (the central monitoring instance). The assignment host_name =
NodeName takes care of that, since NodeName is defined as the name of the host by default
doing the checks and collecting the results. The plugin periodically checks the IDO data-
base and emits (upon successful execution) information about the IDO:

Connected to the database server (Schema version: ‘1.14.3’). Queries per second:
4.633 Pending queries: 21.000. Last failover: 2022-03-23 16:05:05 +0100.

Moving on to a different file zones.d/my-zone/dependencies.conf is where we de-
fine (you guessed it) dependencies for a service. This allows us to say certain services de-
pend on the functionality of other services (and their check results) and form a logical unit.
A typical example would be a web application consisting of a database and a webserver. If
the database fails, the application running on the webserver does not work properly, so it
makes sense to define a dependency between the two. Thus, if the database checks fail, Ic-
inga will also mark the webserver (or the application if that is also monitored somehow) as
failed. This helps in determining the impact an outage has. If a service comes back online,
other dependent services also need to be checked (or restarted) to ensure continued func-
tionality. Otherwise, the checks may report all green again, but the application may have
suffered from the loss of the database and may need manual intervention to fix.

Here, we show the dependency of the agent-health check for services only:

apply Dependency “agent-health-check” to Service {
	 parent_service_name = “agent-health”

	 states = [OK] // Fail if parent service state switches to NOT-OK
	 disable_notifications = true

// Automatically assign all agent endpoint checks as child services on the
// matched host
	 assign where host.vars.agent_endpoint

// Avoid self reference from child to parent
	 ignore where service.name == “agent-health”
}

We see how flexible Icinga is with its domain specific language using common pieces like
“apply” together with placeholders (like Host, Service or Dependency) to define what

10 of 14

31FreeBSD Journal • November/December 2022

and how the monitoring should take place. The agent-health checks trigger if a state oth-
er than OK (like or “FAILED” or “UNREACHABLE”) is detected. To not define this for every
single host we have, and not forget it for any new hosts added later, we use the assign key-
word again to apply this to all hosts defined as an endpoint.

Groups of hosts or services help to keep an overview of systems with common tasks
or criteria, like webservers, database servers, front-end hosts, firewalls, etc. This is what
groups.conf defines, but is optional when the infrastructure to monitor is small or too di-
verse for any commonalities:

object HostGroup “FreeBSD-servers” {
	 display_name = “FreeBSD Servers”
	 assign where host.vars.os == “FreeBSD”
}

Remember the object Host “monitor.example.com” definition in hosts.conf above?
We defined a local variable vars.os. We can now filter on the value of this variable using
the “assign where” statement. Tools that automatically add entries for new hosts in the
infrastructure to hosts.conf may also hold the information about what operating system
is used (among others), hence Icinga groups these systems in the Icingaweb2 display. Ser-
viceGroups are defined similarly. That way, a report may contain the number of systems that
are periodically checked for certain services. Webservers may run different checks than da-
tabase servers, but as service groups, it is easy to either apply them to new hosts as a whole
or define a mixture of both to form a whole new monitoring target.

The last file that I want to show is the users.conf file that holds all the information
about users that Icinga understands and notifies when some checks fail. A basic definition
may look like this:

object UserGroup “icingaadmins” {
	 display_name = “Icinga Admin Group”
}

object User “icingaadmin” {
	 display_name = “Icinga 2 Admin”
	 groups = [“icingaadmins”]
	 email = “icinga@localhost”
}

object User “Helpdesk” {
	 email = “ticket@example.org”
	 display_name = “The Friendly Helpdesk Folks”
	 groups = [“icingaadmins”]
}

Users may be part of other groups as in this example where the Helpdesk user is part of
the Icinga Admin Group. Individual users may be assigned to only a certain host or a set of
services (experts in their field), but not to the overall infrastructure that is monitored.

11 of 14

32FreeBSD Journal • November/December 2022

Notification rules define who is contacted when and by which method (email by default,
but pagers, SMS, and even various instant messengers are possible). Escalations to a differ-
ent group after a certain amount of time can happen when a problem has not been dealt
with (or at least acknowledged), to define certain service-level agreements or for paying
(our impatient) customers.

Other files make up the Icinga monitoring and all are well defined in the documentation.
For now, let’s start all the services to get our basic monitoring infrastructure going. Espe-
cially after all the extra files are added, Icinga needs to know about them, so we restart that
particular service:

monitor# service postgresql restart
monitor# service php-fpm start
monitor# service nginx start
monitor# service icinga2 restart

The Icingaweb2 service is configured via the web browser for which a token is needed
because we don’t want a random stranger driving by our freshly installed monitoring by ac-
cident to misconfigure it. The token is generated and emitted with the following command:

monitor# icingacli setup token create --config=/usr/local/etc/icingaweb2
monitor# chown -R www:www /usr/local/etc/icingaweb2

The token is now readable from the browser and when pasted into the web form, the
remaining setup steps for Icingaweb2 can happen. Fill in the details like the database users
we created and other information like the admin user and its password. At the end, the
Icingaweb2 login will be presented, and you can access all your monitored hosts and ser-
vices from this central place.

Adding New Host Endpoints
After the initial excitement about Icinga’s functionality you may be wondering how to

add more objects to monitor. We will demonstrate this with a new host and show all the
steps necessary to include it into our monitoring.

On a freshly installed host (we use FreeBSD here) called client.example.org, install the
icinga2 package.

client# pkg install icinga2

Since this is a certificate-based authentication between this host and the central Icinga
monitoring instance, we need to ensure that the directory holding the certificates exists and
has the right ownership:

client# mkdir /var/lib/icinga2/certs
client# chown icinga:icinga !$
client# chown -R icinga:icinga /usr/local/etc/icinga2

Next, we enable the icinga2 service to start at system bootup:

12 of 14

33FreeBSD Journal • November/December 2022

client# sysrc icinga2_enable=yes

A client certificate is generated next using the “icinga2 pki” subcommand. While this
command is interactive, we can also provide all necessary parameters directly on the com-
mand line to ease automation later when adding hundreds of hosts. Note that this has to
run on the central monitoring instance.

monitor# icinga2 pki new-cert --cn client.example.org \
 --key /var/lib/icinga2/certs/client.example.org.key \
 --csr /var/lib/icinga2/certs/client.example.org.csr”

The file ending in .csr is the certificate signing request, which is now used in combina-
tion with the previously generated master key to create a new signed client certificate
(example.org.crt).

monitor# icinga2 pki sign-csr \
 --csr /var/lib/icinga2/certs/client.example.org.csr \
 --cert /var/lib/icinga2/certs/client.example.org.crt”

When we ran “icinga2 node setup --master” at the beginning of this article to
generate the master certificate to sign the others, a file called monitor.example.org.crt
was created in /var/lib/icinga2/certs/. Transferring this to the client in a secure way is
necessary to validate the server certificate. There are various ways to do this, depending on
how much you trust the client and any users connected to it, as well as the network (or me-
dium) between the two.

monitor# scp /var/lib/icinga2/certs/monitor.example.org.crt \
 client.example.org:/var/lib/icinga2/certs/

Next, import the certificate into the client and tell Icinga to trust it.

client# icinga2 pki save-cert --trustedcert \
 /var/lib/icinga2/certs/monitor.example.org.crt \
 --host client.example.org”

A new ticket is created for the client on the monitoring server to establish a trust relation-
ship. Essentially, the client asks to be part of the monitoring infrastructure. These requests
may be generated automatically and signed at a later time (after a review by a human or
third entity).

monitor# icinga2 pki ticket --cn client.example.org

Note the resulting ticket output on the commandline (in our case 4f76d2ec-
da535753e9180838ebffbcbca242fe61), we’ll need it in this next step on the client. It will take
the generated ticket from the central monitoring instance and generate configuration files
just like we did manually when we set up our monitor. The zone relationship is established,

13 of 14

34FreeBSD Journal • November/December 2022

making the monitor a parent of the client, establishing trust between them. Additionally, we
tell the client to accept commands and configuration changes sent to it by the monitor. This
is optional and clients may also choose to make their own configuration choices, indepen-
dent of the host. Having the configuration on the central server and controlling the config-
uration of each client there eases the burden of keeping them in sync on every monitored
host. When changing a setting like a new monitoring interval, it only needs to be set once
and the clients will apply the changes coming from the monitor locally.

client# icinga2 node setup --ticket 4f76d2ecda535753e9180838ebffbcbca242fe61 \
 --cn client.example.org --endpoint monitor --zone client.example.org \
 --parent_zone my-zone --parent_host monitor.example.org \
 --trustedcert /var/lib/icinga2/certs/monitor.example.org.crt \
 --accept-commands --accept-config --disable-confd”

Before we start our Icinga instance, we need to verify that all files were written correctly
and conform to Icinga’s logic. To do that, we tell the Icinga daemon to perform a configura-
tion check with the following command:

client# icinga2 daemon -C

If there are any errors, Icinga tries to help pinpoint the file and line in question. Typical er-
rors may be providing the wrong names for the parent or zone. Once the validation is com-
plete, a new entry for this new client needs to be added on the monitoring server to include
it in future check executions. On monitor.example.org, edit

/usr/local/etc/icinga2/zones.d/my-zone/hosts.conf

and add the following lines of configuration, ensuring that this is placed before the central
hosts object definition:

object Host “client.example.org” {
	 import “generic-host” // import generic settings for all hosts
	 display_name = “My Client Host”
	 address = “client.example.org”

	 vars.os = “FreeBSD”
//follow convention that host name == endpoint name
	 vars.agent_endpoint = name
}

Host objects are fairly simple to define and don’t contain any new fields that we have not
yet seen from our previous edits when we added the central server itself. As before, we also
need to define that this host is an endpoint (no further monitoring clients are below it and
that it is not a parent of another host) as well as the zone it belongs to. Typically, these en-
tries are placed before the line containing 'object Zone “director-global” {' and
look like this:

14 of 14

35FreeBSD Journal • November/December 2022

object Endpoint “client.example.org” {
// client connects itself
	 host = “client.example.org”
	 log_duration = 0
}

object Zone “client.example.org” {
	 endpoints = [“client.example.org”]
	 parent = “my-zone” // Establish zone hierarchy
}

In the zone object, we only need to define the name of our endpoint, referencing the
host definition we did earlier in the file. The parent zone is the one that was generated when
we created the monitor certificate. There should already be entries for it in the file by the Ic-
inga configuration. The log duration entry as endpoint attribute instructs the endpoint how
long to store a replay log of all check results on the client if the connection to the parent is
lost. Once the connection is reestablished, the client will replay the log and all the data will
be sent to the parent. Since the parent schedules all the checks to be run on the monitored
systems, setting this to zero is fine.

We’re done wading through configuration files on both hosts. The only thing left is to
start the icinga2 service on the client and on the server to read the configuration changes
we made.

client# service icinga2 start
monitor# service icinga2 restart

The new client should now appear in the Icingaweb2 overview as pending. When the next
scheduled check interval happens, the client is contacted in a secure way (since they ex-
changed certificates, remember?) checks are executed, and results delivered to the central
host.

Congratulations, you can now enjoy monitoring your infrastructure for common services
and add new hosts to it. Make sure to check out the Icinga configuration for various moni-
toring-related information and further ways of configuring your Icinga installation to fit your
needs.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and
member of the documentation engineering team. In the past, he served on the FreeBSD
core team for two terms. He administers a big data cluster at the University of Applied Sci-
ences, Darmstadt, Germany. He’s also teaching a course “Unix for Developers” for under-
graduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

https://www.bsdnow.tv/

