
36FreeBSD Journal • November/December 2022

At EuroBSDCon in Vienna this year, I spoke about my work examining the performance
of QUIC on FreeBSD and Linux

One core part of my measurement approach was CPU saturation during a net-
work transfer that is using all the available CPU cycles for a sender. I used CPU saturation
two ways, the first was to detect if the CPU was the bottleneck in the system. If it wasn’t the
bottleneck, then I needed to be sure that the network was the bottleneck, and not some
other component I wasn’t trying to measure. And second, once I had controlled for CPU
saturation and made sure another bottleneck wasn’t at
play, I could use the actual CPU usage for a test to es-
timate how fast the system could send if it could satu-
rate the network card with UDP. This was really helpful,
as with all my measurements, my network interfac-
es can only manage ~6Gbit/s with UDP traffic in any
form on any of the tested operating systems. But this
doesn’t saturate the CPU, instead it runs at about 70%
utilization. With good CPU measurements, I could in-
vent a metric to optimistically predict what the proces-
sor could do if the network interface wasn’t getting in
the way.

My EuroBSDCon presentation was based on yet un-
published academic work, and it seemed a good idea
to find a well-reasoned approach to looking at CPU performance during a network test.
Some of my tests were inspired by work that Fastly did to compare the computational effi-
ciency of QUIC compared to TCP. While Fastly seems to have established a great testbed,
the only mechanism I could figure out from their writing was to “eyeball” top.

This wasn’t really good enough for publishing results or for accurate evaluation of thou-
sands of test results. If looking at top wasn’t good enough, maybe I could, instead, figure
out how top does its own looking and reimplement that?

How Does top Estimate CPU Utilization?
top is probably the first tool we go to when we wonder what is happening on a system.

Even with its universal usefulness, top is a very simple program that actually draws things

BY TOM JONES

It seemed a good idea

to find a well-reasoned

approach to looking

at CPU performance

during a network test.

Tom Once Again,
 Does Stupid Things
 with a Computer:
 activitymonitor.sh

1 of 6

37FreeBSD Journal • November/December 2022

nicely on the screen and it has some abstractions on the machine to make the code a little
more portable. The CPU utilization interface is provided by FreeBSD in the form of two sy-
sctl nodes:

$ sysctl hw.ncpu
4
$ sysctl kern.cp_time
kern.cp_time: 3832370 11408 3650627 44926 2061043745
$ sysctl kern.cp_times
kern.cp_times: 1080959 3035 954019 4354 515101995 1062132 2823 815176 1143
515263088 960320 3419 980090 37760 515162773 728956 2131 901334 1668 515510273

The first node kern.cp_times, returns 5 values for the processor which report the to-
tal time since boot for time spent in user, nice, system, interrupt and idle. kern.cp_times
reports the same 5 values of the each of the processors in the system. By using kern.cp_
times with hw.ncpu, we can break down this list. By working with both sysctls we get the
total system time usage since boot and the per-processor time usage since boot.

Usage since boot can be helpful in understanding what the machine has been up to and
it is useful to see how the system usage is changing over short periods of time. top on start-
up displays the total system time breakdown, but once it refreshes (by default after 1 sec-
ond), it then shows how these fields have changed over that second.

Plotting
With the ability to very easily reproduce what top does, I wondered if I could grab the sys-

tem CPU utilization periodically and plot it out. I figured I could include these plots next to
throughput plots to show that between tests, the host was almost entirely idle, and it satu-
rated the expected single core when the test was running.

2 of 6
activitymonitor.sh

38FreeBSD Journal • November/December 2022

Over the years, I have had different go-to tools when it comes to plotting, but with this
work, I got tired of custom things and wanted simplicity. I could have plotted out the utiliza-
tions with the easiest method—a spreadsheet, but I thought something that gave me a little
more control would be nice.

In other recent work, I have used web-based tooling for plots. The c3js library gives nice
interactive charts but struggles when there are a lot of data points (more than the low 10s of
thousands). Given that I was also going to look at network usage, the amount of data spread
out over a minute of recordings was going to be a lot.

When thinking about tooling, I recalled a recent article I had written for Klara Systems
on inetd. When writing that article, I created my own simple inetd service that implemented
the datetime service with a shell script.

Could I deliver my CPU usage information live from the host using inetd?

activitymonitor.sh
This leads us to activitymonitor.sh, a hacky creation that abuses all good norms to give

simple plots in a web browser.
activitymonitor.sh is a single shell script that consists of three parts:
•	 A script run by inetd.
•	 A basic html page.
•	 Some javascript to update a live page.
inetd is an Internet service runner. The full history and features of inetd fall a little outside

the scope of this short article, but inetd was used for on-demand launch applications when
hosts were too small to have waiting services hanging around in memory. inetd handles lis-
tening for traffic. When connections are received or datagrams arrive (for UDP based pro-
tocols), inetd launches either a built-in handler or a specified program. The program is given
reads from the Internet connection on standard in. Any writes to standard out are sent out
over the network. This is a really simple interface, but powerful enough to implement plain
text server protocols.

A Small Script
The small script is quite simple. It has two main components and then a blob of data ap-

pended to it which is the web page and javascript.
First, the shell script deals with being a guest of inetd and parsing the http headers. The

input to the script will be the HTTP headers the client sends when making its request.

Read client headers, we only really care if one is data.json.
h=””
while read -t 1 h
do
 log $h

 if echo $h | grep -q “data.json”;
 then
 page=”data.json”
 contenttype=”application/json”
 else
 fi
done

3 of 6
activitymonitor.sh

https://klarasystems.com/articles/modern-inetd-in-freebsd/
https://klarasystems.com/articles/modern-inetd-in-freebsd/

39FreeBSD Journal • November/December 2022

echo “HTTP/1.0 200 OK”
echo “Content-Type: $contenttype”
echo

The script uses the read built-in command with a timeout, meaning the script will con-
sume all the input on the socket until there is a 1-second gap between incoming lines
before proceeding. This read timeout is the rate-limiting mechanism. The headers are
checked to see if the data url is being requested, if not then it delivers the base html page.

The data url path of the script is where we gather up interesting data about the host. ac-
tivitymonitor.sh implements most of the default interface of top. To do so, it gathers up the
required information using FreeBSD base commands and then encodes them into a JSON
blob delivered to the requester.

if[“$contenttype” == “text/html”]
then
 indexstart=$((cat -n $0 | grep -e 'INDEX START'\
 | awk '{print $1}' | tail -n 1+1))
 sed -n”$indexstart”',$p' $0
elif[“$contenttype” == “application/json”]
then
 psout=$(ps -ax -o \
 “user,pid,%cpu,cpu %mem,vsz,rss,state,command”\
 --libxo json)
 vmstatout=$(vmstat –libxo json)
 netstatout=$(netstat -bi –libxo json)

 # kern.cp_time(s) gives us 5 numbers for the system:
 # user nice system interrupt idle
 # kern.cp_times gives us hw.ncpu entries for those 5 values
 totalcputime=$(sysctl -n kern.cp_time)
 percputime=$(sysctl -n kern.cp_times)
 ncpu=$(sysctl -n hw.ncpu)
 loadavg=$(sysctl -n vm.loadavg)
 lastpid=$(sysctl -n kern.lastpid)
 hostname=$(sysctl -n kern.hostname)

 system=$(printf ‘{“hostname”:”%s”,
 “cp_time”:”%s”, “cp_times”:”%s”, “ncpu”:”%s”,
 “loadavg”:”%s”, “lastpid”:”%s”}’ “$hostname”
 “$totalcputime” “$percputime” “$ncpu”
 “$loadavg” “$lastpid”)
 log $system

 physmem=$(sysctl -n hw.physmem)
 pagesize=$(sysctl -n hw.pagesize)

4 of 6
activitymonitor.sh

40FreeBSD Journal • November/December 2022

 pagecount=$(sysctl -n vm.stats.vm.v_page_count)
 wirecount=$(sysctl -n vm.stats.vm.v_wire_count)
 activecout=$(sysctl -n vm.stats.vm.v_active_count)
 inactivecount=$(sysctl -n vm.stats.vm.v_inactive_count)
 cachecount=$(sysctl -n vm.stats.vm.v_cache_count)
 freecount=$(sysctl -n vm.stats.vm.v_free_count)

 memory=$(printf '{“physmem”:”%s”, “pagesize”:”%s”,
 “pagecount”:”%s”, “wirecount”:”%s”,
 “activecout”:”%s”, “inactivecount”:”%s”,
 “cachecount”:”%s”, “freecount”:”%s” }’
 “$physmem” “$pagesize” “$pagecount”
 “$wirecount” “$activecout” “$inactivecount”
 “$cachecount” “$freecount”)

 log $totalcputime
 # deliver the data json
 printf '{“system”:%s, “memory”:%s, “ps”:%s,
 “vmstat”:%s, “netstat”:%s}'“$system”
 “$memory” “$psout” “$vmstatout” “$netstatout”

fi
exit # don’t continue into the web page

The first set of information the script collects comes from FreeBSD tools that have libxo
support. Libxo is a very powerful FreeBSD feature—base tools with support can give output
in JSON natively. We grab the output of ps, vmstat and netstat. This lets us display pro-
cesses, vm system information, and network statistics such as interface rates.

The second set in the script is concerned with getting information directly from the sy-
sctl interface. Right now, we get the kern.cp_time(s), number of cpus, hostname, load aver-
age and base statistics about memory. Each of these has to be bundled into a JSON object
by hand by using printf.

All of this information is then built into a JSON object which the script prints out after a
simple response header. inetd then feeds back into the connecting socket and returns to
the client as the body of the http response.

A Basic Web Page
The activitymonitor.sh script embeds a tiny webpage within itself which it delivers if the

data url isn’t requested. The page has a header, some canvases to give the javascript some-
where to draw plots, and a pre block for the top-style process list. It also embeds the javas-
cript that causes all the magic to happen.

The html page (and javascript) is appended to the end of the shell script and marked with
a 'INDEX START' tag. activitymonitor.sh searches itself for this tag and takes everything af-
ter the tag as content to deliver, using sed to cut it up.

Some Javascript
The javascript does all the heavy lifting to parse out information from the data and to

5 of 6
activitymonitor.sh

41FreeBSD Journal • November/December 2022

give us a user interface. It pulls out and processes the kern.cp_times values and calculates
deltas we need to draw the plots.

The main functional thing it does other than drawing is to request data from the data
side of activitymonitor.sh. Once the basic web page has loaded, the script will kick off a task
to fetch the '/data.json' url.

When data successfully arrives it pulls in the fields it needs to from the JSON result and
merges in new data to calculate what should be displayed.

Finally, at the end it calls getdata again to start off this task. Because of the read time-
out in activitymonitor.sh, this will happen with a 1-second gap between results.

This is a Bad Idea
activitymonitor.sh was a fun little project that got away from me and almost became a

usable tool. The CPU plots helped me understand that the FreeBSD scheduler moves pro-
cesses between CPUs very eagerly and helped me devise a measurement strategy that
would account for this.

While a fun project, it is not something that should be used by anyone in the real world.
Instead, it is an example of the power of composability of the tools in the FreeBSD base sys-
tem. Other than sysctl, all the tools we use natively output JSON and can be fed into power-
ful user interface languages.

This native support for JSON makes it easy to consume output from standard tools and
lets automation occur with the data a human would consume trivially. This gives us power
to build systems that are machine readable with the same data we read on the screen. It is a
small enhancement beyond the traditional UNIX interfaces, but an incredibly powerful one.

activitymonitor.sh is available here
inetd configuration such as the following is required:

http-alt stream tcp nowait tj /home/tj/code/activitymonitor.sh
activitymonitor.sh

TOM JONES wants FreeBSD-based projects to get the attention they deserve. He lives
in the North East of Scotland and offers FreeBSD consulting.

6 of 6
activitymonitor.sh

https://gist.github.com/adventureloop/a66c7904dfbf3749449c22966e2229e5

