
29FreeBSD Journal • January/February 2023

In the last 30 years, the computers we use have grown unimaginably faster. The 1995 Al-
pha AXP paper talked about designing for a machine’s continuing the trend of the previ-
ous 25 years, getting 1000 times faster.

We have certainly managed to meet that goal, the 386 machines that were the original
target of FreeBSD are akin to the micro controllers we use in keyboards today.

Even with these changes, the core of computer performance has remained the same, ex-
ecute fewer instructions per unit of work, and things will go faster. This fundamental truth
underlying networking has led to several different approaches to improving performance.
We have worked on mechanisms that moved work away from our CPU and, instead, into
the network card with checksum offload. If the card runs the instructions to checksum out-
going packets, then our precious CPU time can be spent doing other things.

Checksum offload saw great results, and we started to move other things away from
the CPU and into the network interface. TCP Segment Offload (TSO) was the next great
mechanism that improved performance for a network sender. Rather than forming the IP
packets for the TCP segments we will send, we can form one template and send that with
a large block of data to the card. The network interface handles the segmenting as it places
the packets onto the wire. TSO gives huge benefits
to a TCP sender, providing us the ability to saturate
10-Gigabit network interfaces well before we run
out of even a single core.

TSO lets us be more efficient with precious re-
sources. We reduce the number of bus (memory
and PCI) transactions required to send each packet
by batching them together and creating the final
chunks at the point of transmission. This is straight-
forward for TCP to do, most of the time if we are
bulk sending a stream of data and the chunking of
data is clear. To mirror these improvements on the
TCP receiver, we have Large Receive Offload (LRO).
LRO lets us again reduce the number of transac-
tions required to maintain high-rate data transfers.

For UDP, Linux has generic mechanisms that attempt to replicate TSO-like mechanisms.
This support comes with Generic Segment Offload (GSO) and Generic Receive Offload
(GRO). GSO enables huge improvements on the order or 20% for a UDP sender, GRO is
more difficult to measure, but the mechanism is there.

FreeBSD has excellent support for TSO and LRO, but is lacking mechanisms similar to
GSO and GRO. At EuroBSDCon in Vienna last year I spoke to John Baldwin about a mecha-
nism similar to GRO that he is working on, which he calls Packet Batching.

1 of 2

BY TOM JONES AND JOHN BALDWIN

Packet Batching

FreeBSD has excellent

support for TSO and

LRO, but is lacking

mechanisms similar

to GSO and GRO.

30FreeBSD Journal • January/February 2023

TJ: What is the background to the packet batching work?
JB: The idea of packet batching on receive has been around for a while, at least in the form
of a wish list item I’ve heard various people mention several times. We already have some
forms of packet batching specific to TCP for both sending (TSO) and receiving (LRO). This
packet batching aims to be more generic than LRO so that it can apply to other protocols
(primarily UDP).
TJ: Why is the work needed?
JB: The goal of packet batching approaches such as TSO and LRO is to amortize per-pack-
et costs (various checks in the network stack on header fields, etc.) by doing them once per
batch rather than once per packet. The cost of per-packet overheads becomes an increas-
ingly worse problem as network speeds increase faster than CPU speeds. It is true that one
of the fixes for this problem, in general, which does help with per-packet overhead, is hor-
izontal scaling by using RSS to distribute packets across separate queues bound to differ-
ent CPUs. However, you can’t distribute a single flow across multiple cores, and batching
schemes are aimed at making the performance of a single queue more efficient.
TJ: What new features/enhancements does the work make possible?
JB: The goal is higher PPS and/or reduced CPU usage for network received workloads. I
don’t expect it to help with TCP when LRO is enabled, mostly to help with UDP.
TJ: How can people test the work? Normally we need to emphasize testing with more di-
verse workloads, does this apply here?
JB: Benchmarking would be welcome. My initial set of simple benchmarks using iperf3 were
mixed and not a clear enough win to justify the changes. The changes do add complexi-
ty, so it needs to be a clear win in some workloads, I think, before it should be considered a
commit candidate. I have not observed any regressions in my benchmarks to date, just mea-
ger to zero gains.
TJ: How would you like feedback?
JB: E-mail directly to me is probably the best way to send feedback for now. At some point
in the future, I will start a public RFC thread on net@ and/or arch@ at which point that
thread will be the best place to send feedback. Folks wishing to test the patches or review
them can find them at https://github.com/freebsd/freebsd-src/compare/main...bsdjhb:-
freebsd:cxgbe_batching.

From John’s responses here, it isn’t yet clear where the benefits should be seen. iperf3
measurements can’t simulate the workload of a very busy server. For Packet Batching to of-
fer a benefit in FreeBSD it is likely that more workloads need to be tested and tuned for. By
pulling down John’s github branch and experimenting with your network traffic, you can
help establish a new receiver optimization in FreeBSD.

TOM JONES wants FreeBSD-based projects to get the attention they deserve. He lives in
the North East of Scotland and offers FreeBSD consulting.

JOHN BALDWIN is a systems software developer. He has directly committed changes to the
FreeBSD operating system for 20 years across various parts of the kernel (including x86 plat-
form support, SMP, various device drivers, and the virtual memory subsystem) and userspace
programs. In addition to writing code, John has served on the FreeBSD core and release en-
gineering teams. He has also contributed to the GDB debugger and LLVM. John lives in Con-
cord, California, with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

2 of 2

Packet Batching

https://github.com/freebsd/freebsd-src/compare/main...bsdjhb:freebsd:cxgbe_batching
https://github.com/freebsd/freebsd-src/compare/main...bsdjhb:freebsd:cxgbe_batching

