
5FreeBSD Journal • January/February 2023

PostgreSQL is a relational database management system implementing the SQL stan-
dard, with a BSD-like license. Its pre-SQL ancestor POSTGRES began at Berkeley Uni-
versity in the mid 1980s. It’s popular on FreeBSD, where it is usually deployed on ZFS
storage.

Many articles about PostgreSQL on ZFS recommend changing ZFS’s recordsize set-
ting and PostgreSQL’s full_page_writes setting. The real impact of the latter setting
on performance and crash-safety is not often explained, perhaps because it’s not generally
safe to adjust it on most popular file systems. In this article I summarize the logic and trade-
offs behind this mysterious mechanism—after a brief detour to talk about block sizes.

Blocks
Nearly all of PostgreSQL’s disk I/O is aligned on

8KB blocks, or pages. It is possible to recompile it
to use a different size, but that is rarely done. This
size may originally have been chosen to match
UFS’s historical default block size (though note
that FreeBSD’s UFS now defaults to 32KB). ZFS
uses the term record size, and defaults to 128KB.
Unlike other file systems, ZFS allows the record
size to be changed easily at any time, and to be
configured separately for each dataset.

If the data will be accessed randomly, then in theory the size should ideally match Post-
greSQL’s 8KB blocks. Otherwise, random I/O could suffer from two effects:

•	I/O amplification, because every read or write of an 8KB block also transfers extra
neighboring data

•	read-before-write when storage blocks are not currently in the OS’s cache and an 8KB
block must be written, so the neighboring data must be read first

If the data will be accessed mostly sequentially, or rarely, and especially if the benefits of
ZFS compression using larger records outweigh concerns about I/O bandwidth and latency,
then it can be a good idea.

Some sources make a blanket recommendation of 16KB, 32KB or 128KB record size, as a
sweet spot for better compression without too much write amplification or latency. My aim

BY THOMAS MUNRO

POSTGRES began at

Berkeley University

in the mid 1980s.

1 of 4

ZFS’s Atomic I/O
and PostgreSQL

6FreeBSD Journal • January/February 2023

here isn’t to make such recommendations–I doubt there is one answer–but rather to ex-
plain what’s going on.

Some applications have a mix of requirements for different kinds of data. Tablespac-
es can be used to store different tables in different ZFS datasets with different record size,
compression or physical media. It’s also possible for a table to be partitioned, for example
with older data in one tablespace and current active data in another.

CREATE TABLESPACE compressed_tablespace
LOCATION /tank/pgdata/compressed_tablespace;

ALTER TABLE t
SET TABLESPACE compressed_tablespace;

One problem reported with small ZFS record sizes is fragmentation. A table that receives
frequent random updates might finish up with blocks scattered all over the place, and we’d
prefer them to be physically clustered for good sequential read performance. A simple way
to ask PostgreSQL to rewrite the files that hold a table and its indexes in order to defrag-
ment them at the ZFS level would be to issue VACUUM FULL table_name or CLUSTER
table_name, if you are prepared to lock queries out of the table for the duration of the re-
write. Rewriting a table also allows a new record size to take effect, if it has been changed at
the dataset level.

Torn Writes
The PostgreSQL setting full_page_writes defaults to on, and ZFS users often turn it

off. The performance of write-intensive workloads then becomes faster and more consis-
tent. For example, in a simple pgbench test on a low end cloud VM I measured a 32% in-
crease in transactions per second by turning it off.

So what does it really do? That requires a surprising amount of background explanation.
The short version is that PostgreSQL uses physiological logging for crash safety, and that

means that writes to individual database pages must be atomic on power failure, or it may
not be able to recover after a crash. Unless you promise that your storage stack has that
property, then PostgreSQL has to do some extra work to protect your data.

Atomicity on power failure is the property that if a physical write was in progress when
power was lost, later we can expect to read back either the old version or the new version
of a block, for some given block size, but not a partially modified or torn version. This is not
to be confused with atomicity of concurrent reads and writes (see below). Physiological log-
ging, short for physical-to-the-page, logical-within-the-page, is a term from textbook classi-
fications of logging strategies, and it means that log records identify a block to be changed
by file and block number, but then describe the change to make within that page in a nota-
tion that requires us to read in the existing page to understand how to modify it “logically”,
rather than just updating bits at a physical address.

After a crash, the recovery algorithm can cope with the “old” page contents or the “new”
page contents, applying any logged changes required to bring it up to date. If it encounters
a non-atomic mash-up of old and new data, then logical changes to the page cannot be re-
played, and recovery fails! A superficial problem is that if data_checksums is enabled, then
PostgreSQL’s page-level checksum check will fail even to read the page in. If checksums are
disabled, we’ll get further, but a logical change such as “insert tuple (42,Fred) in slot 3” can’t

2 of 4

7FreeBSD Journal • January/February 2023

be replayed reliably. In order to apply the change in this example we need to understand a
table of slots using pre-existing meta-data on the page, but it’s potentially corrupted.

Physiological logging is a very widely used technique in the database industry, and dif-
ferent RDBMSs have found different solutions to the problem of torn pages. Since open
source systems have been developed and used on a wide variety of low end systems often
without various forms of hardware protection against power loss, failures were common
and software solutions had to be developed.

PostgreSQL’s current solution is to switch to page-level physical-only logging or full page
writes, where the whole data page is dumped into the log, for the first modification to each
data page after each checkpoint. Checkpointing is a periodic background activity, and in an
ideal world would have minimal effects on foreground transaction performance. However,
due to the first-touch rule, once a checkpoint starts, write-heavy workloads might suddenly
start generating a lot more log data, as small updates suddenly require many 8KB pages to
be logged. This effect typically decays gradually because subsequent modifications to each
page go back to being physiological, until the next checkpoint, sometimes resulting in a
sawtooth pattern in I/O bandwidth and transaction latency.

Another popular open source database has a
different solution that also involves writing all data
out twice with a synchronization barrier between,
since both copies can’t be torn.

ZFS needs none of that! It has record-level ato-
micity by virtue of its own copy-on-write design.
It’s not possible to see a mixture of the old and
new contents of a ZFS record, because it doesn’t
physically overwrite them, and its system of TXGs
and the ZIL makes writes transactional. Therefore,
it is safe to set full_page_writes=off as long as recordsize is at least 8KB.

Note that ZFS itself also physically writes data twice in some scenarios. A common rec-
ommendation is to consider setting logbias=throughput for the dataset holding the
main data files (but perhaps not the one holding PostgreSQL’s log directory pg_wal—a top-
ic not explored in this article). That option tries to write blocks directly into their final loca-
tion instead of logging them first in the ZIL. If you use the ZFS default logbias=latency
and the PostgreSQL default full_page_writes=on, data may in fact be written out four
times in total as both PostgreSQL and ZFS perform extra work to create record-level ato-
micity, while both of those changes bring it down to one copy.

Unfortunately there are two special scenarios where full_page_writes=on is still
needed for correct behavior: while running pg_basebackup and pg_rewind. Those tools
are used for backups, or to create or re-synchronize streaming replicas from another serv-
er; in the case of pg_basebackup, full page writes will be silently enabled while running the
command, while in the case of pg_rewind, the command will refuse to run if it is not man-
ually enabled (an annoying inconsistency in current releases). These tools make raw file sys-
tem-level copies of data files, along with the logs required for crash recovery to deal with
consistency problems caused by concurrent changes. Here we run into a different meaning
of I/O atomicity: reading from a file that might be concurrently written to. The first prob-
lem is that file systems on Linux and Windows (but not ZFS, or any file system on FreeBSD,
due to the use of range locks) can show readers a random selection of before and after

3 of 4

It’s not possible to see

a mixture of the old

and new contents of

a ZFS record.

8FreeBSD Journal • January/February 2023

bits when there is an overlapping concurrent write. Furthermore, the I/O is currently done
in a way that isn’t suitably aligned, so even on ZFS, torn pages could be copied. To defend
against that, full_page_writes behavior is needed. This problem should eventually be
fixed in PostgreSQL, by copying the raw data files with appropriate alignment and interlock-
ing. Note that ZFS snapshots can be used instead of pg_basebackup if certain precautions
are taken (primarily that the snapshot must atomically capture the logs and all data files),
thus reducing the impact when cloning or backing up a very busy system.

Recovery
We’ve seen how full_page_writes=off improves the performance of write transac-

tions, and ZFS makes that safe. Unfortunately there can also be negative performance im-
plications for replication and crash recovery. These activities both perform recovery, mean-
ing that they replay the log. Although full page images are a pessimization when they’re
written, they act as an optimization when they’re replayed at recovery time. Instead of hav-
ing to perform a random synchronous read that might block recovery’s serial processing
loop, we have the contents of the page to be modified already in our nice sequential log,
and after that it is cached.

PostgreSQL 15 includes a partial solution to this problem: it looks ahead in the log to find
pages that will soon be read, and issues POSIX_FADV_WILLNEED advice, to generate a con-
figurable degree of I/O concurrency (a sort of poor man’s asynchronous I/O). At the time of
writing, FreeBSD ignores the advice, but a future version of OpenZFS will hopefully connect
it up to FreeBSD’s VFS (OpenZFS pull request #13958). Eventually, this should be replaced
by a true asynchronous I/O subsystem that is currently being developed and proposed for a
future version of PostgreSQL.

The effect of full_page_writes=off on recovery I/O stalls was studied by a group
using PostgreSQL on ZFS on the illumos operating system at scale. They developed a tool
called pg_prefaulter as a workaround. They had found that their streaming replicas
couldn’t keep up with their primary servers due to predictable I/O stalls. They may have
been uniquely placed to see this effect since most large scale users of PostgreSQL don’t
even have the option of setting full_page_writes=off. pg_prefaulter may be a solu-
tion if you run into this problem, until built-in prefetching is available.

Looking Ahead
Block size alignment is likely to become a bigger topic in future PostgreSQL releases that

will hopefully include proposed direct I/O support, which for now exists only in prototype
form. This coincides happily with the development of direct I/O support for OpenZFS (pull
request #10018), which will probably require block size agreement to work effectively (the
current prototype reverts to the ARC otherwise; some other file systems simply refuse non-
aligned direct I/O). Another OpenZFS feature in the works that is likely to be very useful
for databases is block cloning (pull request #13392), along with new systems interfaces for
FreeBSD, which PostgreSQL should hopefully be able to use for fast cloning of databases
and database objects with finer granularity than whole datasets.

THOMAS MUNRO is an open source database hacker working for Microsoft Azure, who
is usually logged into a FreeBSD box.

4 of 4

mailto:tmunro@{postgresql,freebsd}.org

