
33FreeBSD Journal • September/October 2023

O ne day on IRC, bofh@ ran into a problem whilst trying to update a Python port: the
source no longer included a setup.py file. Without such a file, the Python frame-
work within the Ports framework just did not work, there was no path forward. In-

trigued, I started doing some light digging on the matter, and very quickly found an entire
new packaging and distribution standard that we would need to support sooner or later. A
growing collection of packages were leading or following suit, and the eventual Python 3.12
release would exacerbate this issue even further. I emphasise standard because setup.py
and previous iterations of third-party/add-on Python software distribution were never stan-
dardised or architected at all…

Enter PEP 517, an actual design and architecture of Python package building and distribu-
tion, using the wheel package format first standardised in PEP 427. Immediately upon skim-
ming all relevant Python Enhancement Proposals (PEPs), I exclaimed, this is way better, let’s
figure out how to implement this in the Ports framework.

A Brief History of Python Packaging Generally
Mostly adapted from “Why you shouldn’t invoke setup.py directly”

Many perceptions of “brief” exist, so this may seem anything but. This history is unfortu-
nately long and convoluted, with a load of nuance left out, so this is as “brief” as it can get.

Prior to Python 2.0, no organised way of distributing Python code existed, not like a C
project’s configure-build-install workflow. Python 2.0 introduced distutils, a new module
within the standard library/distribution to provide something akin to the more common
make(1) targets dealing with configure-build-install. This made it relatively straightforward
to integrate into distro systems like our Ports framework to create operating system-level
packages.

Unfortunately, no good way to specify and enforce dependencies could be had with only
distutils. Unlike projects that configured and compiled code, where missing or incorrect de-
pendencies would result in errors at any stage, no practical enforcement mechanism oth-
er than running the code itself existed for the interpreted Python (CPython has a bytecode
compiler, the output of which is actually executed, but that’s an entirely different topic with
its own details and pitfalls). Distro systems like our Ports framework handle the dependency
part of the equation, but most people outside of that context were not going to read READ-
MEs or otherwise figure out dependencies to install Python code in their local environments.

Enter setuptools, intended as a drop-in enhanced replacement to distutils that provides,
amongst other features, dependency management. Worked great for most packages that
have setuptools at the top of the build chain. However, certain packages import dependen-
cies before setuptools can do its thing. Different targets do not necessarily need the same

BY CHARLIE LI

1 of 4

PEP 517
Python Packaging’s New World Order

https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html

34FreeBSD Journal • September/October 2023

dependency set. Some packages even specified exact setuptools versions. Worst of all, ev-
erything played in the same (host) environment, and setuptools itself cannot properly cre-
ate the correct environment to execute properly.

For distro systems like our Ports framework, these shortcomings were less of an issue.
We have ways to automatically manage dependencies and isolate environments to provide
the correct environment for setuptools to do its thing, especially with poudriere. Not quite
the case in developer scenarios, especially before Python virtual environments came along.

Additionally, the package formats defined by distutils/setuptools were inflexible, hard to
maintain and hindered innovation with regards to the act of building and installing Python
packages. The wheel standard was developed as a dedicated package format independent
of any build and install scheme. This is much like our own pkg(8) or other operating sys-
tem-level package manager package formats. Great, except distutils/setuptools themselves
relied on yet another external Python package for this functionality, aptly named wheel,
rather than integrating it in the first place. Can anyone smell circular dependency…

In the intervening years, different projects sprung up to experiment with non-distutils/
setuptools build systems, particularly when setuptools grew as bloated as necessary but
those projects were aiming for simplicity à la old-school Unix philosophy. But because dis-
tutils/setuptools was still the de facto interface for building and installing, none of these new
projects could be used in production to do what they intended. With the package format
defined to be independent of any build and install scheme, enter PEP 517, a minimal inter-
face for generating wheels that build systems implement, allowing for choice in this area.

USE_PYTHON=distutils
Consider a Python package sample with the following source layout:

sample/
├── setup.py
├── …
└── src/
 └── sample/
 ├── __init__.py
 └── …

The port would look something like this:

PORTNAME=	 sample
DISTVERSION=	 1.2.3
CATEGORIES=	 devel python
MASTER_SITES=	 PYPI
PKGNAMEPREFIX=	 ${PYTHON_PKGNAMEPREFIX}

MAINTAINER=	 freebsd@example.org
COMMENT=	 Python sample module

RUN_DEPENDS=	 ${PYTHON_PKGNAMEPREFIX}six>0:devel/py-six@${PY_FLAVOR}

USES=	 python
USE_PYTHON=	 autoplist distutils

.include <bsd.port.mk>

2 of 4

35FreeBSD Journal • September/October 2023

With a properly equipped, normal setup.py, the ports framework executes setup.py’s
configure, build, install targets for each port target respectively. The Python package does
not specify any build dependencies other than the implicit distutils/setuptools providing all
the structure. A runtime dependency is specified, which distutils/setuptools checks only on
install. Installation metadata is generated, which includes a list of installed artefacts that we
use, with minor modifications, for our packing list.

This follows the procedure traditionally used for C/C++ projects with Makefiles. Artefacts
are installed into a stage directory hierarchy which is then packaged up.

USE_PYTHON=pep517
Consider an updated Python package sample with the following source layout:

sample/
├── pyproject.toml
├── …
└── src/
 └── sample/
 ├── __init__.py
 └── …

The port would look something like this:

PORTNAME=	 sample
DISTVERSION=	 1.2.4
CATEGORIES=	 devel python
MASTER_SITES=	 PYPI
PKGNAMEPREFIX=	 ${PYTHON_PKGNAMEPREFIX}

MAINTAINER=	 freebsd@example.org
COMMENT=	 Python sample module

BUILD_DEPENDS=	 ${PYTHON_PKGNAMEPREFIX}flit-core>0:devel/py-flit-core@${PY_FLAVOR}
RUN_DEPENDS=	 ${PYTHON_PKGNAMEPREFIX}six>0:devel/py-six@${PY_FLAVOR}

USES=	 python
USE_PYTHON=	 autoplist pep517

.include <bsd.port.mk>

At first glance, this port looks almost identical. When designing the porting workflow,
careful consideration was taken to ensure as seamless of conversion as possible as Python
packages update and adopt PEP 517.

With this method, setuptools is no longer the centre of attention. Instead, the implicit
build dependencies are two separate Python package ports, a build frontend and integra-
tion frontend. The build frontend parses build-specific metadata in pyproject.toml to deter-
mine the build backend, make sure it exists in the environment, and executes it to build the
wheel. In this example, the build backend is flit-core, and it is specified as a regular build de-
pendency. If the build succeeds, a wheel file is generated with a strictly formatted file name.
The integration frontend references the wheel file in that strict formatting, checks runtime
dependencies and installs into staging, metadata included. Our packing list comes from this
metadata similar to before.

3 of 4

36FreeBSD Journal • September/October 2023

A notable omission compared to the other method is a separate configure stage, which
is integrated into the build stage. This allows Python packages to choose which build back-
end is most appropriate for their project, whether something available in PyPI or something
custom within their source tree.

Caveats and Future Considerations
In the intervening period since PEP 517 support landed in the Ports framework, a number

of people have commented on some perceived inflexibility in our implementation. More
likely than not, the inflexibility is intentional, based on adherence to Python standards and
security/integrity considerations amongst others.

One focal point has involved the wheel file name called during the stage process. We
could pass an entire wildcard wheel file name into the PEP 517 integration frontend and call
it a day, but such squanders a golden opportunity to improve metadata congruency be-
tween the Python side and the port. Some ports’ names or versions do not match their Py-
thon package metadata counterparts. To add insult to injury, PyPI has had a history of ty-
posquatted packages leading to malware. Being able to prematurely fail a port build based
on incongruent metadata provides another mechanism to keep our tree secure from even
the stealthiest of attacks even before any patches are offered up in pre-commit project
spaces.

Since the wheel Python package itself switched to PEP 517, our setuptools ports can now
depend on it rather than the other way around. This opens up the USE_PYTHON=distutils
case to build wheels rather than the original method, which would not only unify the stage
workflow around the PEP 517 integration frontend but would enjoy the same metadata in-
tegrity checks in the process.

In all, this was and will continue to be an ordeal. More modern languages include their
own package managers, primarily aimed at developers and their isolated environments, but
expect most everyone including operating system-level packagers to use them. At least
with Python, there has always been some way to at least sidestep that notion, first with dis-
tutils/setuptools, and now with PEP 517 making things even cleaner. We still have to mind
things like mapping languages’ acceptable package version schemes to our standards and
overall metadata congruence, but such can be tackled gradually.

CHARLIE LI is a ports committer focusing on GTK-based desktops, Python, some Rust
and amateur radio (callsign: K3CL). Sometimes ventures into other areas for root cause
analysis. In real life, he is a technical consultant and sometimes dispatches buses at his
local public transportation agency..

4 of 4

