
1FreeBSD Journal • November/December 2023

1 of 5

OCI container engines such as containerd or podman need images. A contain-
er image is a read-only directory tree which typically contains an applica-
tion with supporting files and libraries. Running this image on a container

engine makes a writable clone of the image and executes the application in some kind of
isolation environment such as a jail.

Images are distributed via registries which store the image data and provide a simple
REST API to access images and their metadata. The registry
APIs, image formats and metadata are standardised by the
Open Container Initiative which largely replaces earlier dock-
er formats.

OCI Images
Images are represented as a sequence of layers, each of

which is stored as a compressed tar file. To unpack the im-
age, we start with an empty directory and then unpack each
layer in sequence, allowing later layers to add files or change
files from an earlier layer. Typically, the result of this process is
cached by the container engine.

In addition to the layer data, two additional metadata ob-
jects are used. The manifest lists the layers and can contain
annotations to describe the image. The image config
describes the target operating system and architecture and
allows a default command to be used for running the image.

All of this is stored in a ‘content addressable’ structure where the hash of a component is
used to name it. For example, a small base image I use for statically linked applications looks
like this:

BY DOUG RABSON

FreeBSD FreeBSD
Container Container
ImagesImages

Running this image on a
container engine makes
a writable clone of the
image and executes the
application in some kind
of isolation environment
such as a jail.

https://containerd.io
https://podman.io
https://opencontainers.org

2FreeBSD Journal • November/December 2023

$ ls -lR
total 6
drwxr-xr-x 3 root dfr 3 Sep 8 10:36 blobs
-rw-r--r-- 1 root dfr 275 Sep 8 10:36 index.json
-rw-r--r-- 1 root dfr 31 Sep 8 10:36 oci-layout

./blobs:
total 25
drwxr-xr-x 2 root dfr 6 Sep 8 10:36 sha256

./blobs/sha256:
total 950
-rw-r--r-- 1 root dfr 1143 Sep 8 10:36
190e4f8bf39f4cc03bf0f723607e58ac40e916a1c15bd212486b6bb0a8c30676
-rw-r--r-- 1 root dfr 496 Sep 8 10:36
5657eb844c0c0142aa262395125099ae065e791157eaa1e1d9f5516531f4fe30
-rw-r--r-- 1 root dfr 34916 Sep 8 10:36
5af368a2a6078dc912135caed94a6375229a5a952355f5fea60dad1daf516f78
-rw-r--r-- 1 root dfr 911102 Sep 8 10:36
fdb4ee0a131a70df2aae5c022b677c5afbacb5ec19aa24480f9b9f5e8f30fd18

All the metadata files in this bundle are in json format as described here. The top-level
index.json file links to the manifest using its hash:

$ cat index.json | jq
{
 “schemaVersion”: 2,
 “manifests”: [
 {
 “mediaType”: “application/vnd.oci.image.manifest.v1+json”,
 “digest”: “sha256:190e4f8bf39f4cc03bf0f723607e58ac40e916a1c15bd212486b6bb0a8c30676”,
 …
 }
]
}

This manifest describes two data layers, one with just the FreeBSD standard directory
structure and one containing minimal support files such as /etc/passwd and ssl certificates.
It also links to the config which has the target operating system and architecture.

Using a content-addressable format like this makes it easier to share storage space and
reduce the amount of data downloaded when using multiple images derived from the same
base.

The OCI image specification also allows for multi-architecture images which are just lists
of manifests:

2 of 5

3FreeBSD Journal • November/December 2023

{
 “schemaVersion”: 2,
 “mediaType”: “application/vnd.docker.distribution.manifest.list.v2+json”,
 “manifests”: [
 {
 “mediaType”: “application/vnd.oci.image.manifest.v1+json”,
 “size”: 1116,
 “digest”:
“sha256:598b927b8ddc9155e6d64f88ef9f9d657067a5204d3d480a1b1484da154e7c4”,
 “platform”: {
 “architecture”: “amd64”,
 “os”: “freebsd”
 }
 },
 {
 “mediaType”: “application/vnd.oci.image.manifest.v1+json”,
 “size”: 1118,
 “digest”:
“sha256:ac732db0f4788d5282a8d16fefbea360d937049749c83891367abd02801b582”,
 “platform”: {
 “architecture”: “arm64”,
 “os”: “freebsd”
 }
 }
]
}

FreeBSD Base Images
To make it easier to work with containers on FreeBSD,

there is a need for suitable base images. The traditional
FreeBSD release process generates a small number of pack-
ages intended for installing a fully featured FreeBSD OS on a
physical or virtual host. We could use the base.txz package to
build our base image but this results in a gigabyte sized im-
age, more than 90% of which is not needed by most applica-
tions. Most Linux distributions offer much smaller base imag-
es — the official Ubuntu image, for instance, is about 80MB.

Fortunately, the pkgbase project has been working to
make a fine-grained package set which subdivides the tradi-
tional base.txz tarball into hundreds of much smaller packag-
es. Currently, this consists of many packages for individual libraries and utilities along with
two larger packages, FreeBSD-runtime which contains the shell along with a selection of
core utilities and FreeBSD-utilities which has a larger set of commonly used utilities.

Early on, I created a “minimal” image using pkgbase which included FreeBSD-runtime,
plus SSL certificates and pkg. This is about 80MB and contains enough functionality for sim-

3 of 5

Most Linux distributions
offer much smaller base
images — the official
Ubuntu image, for
instance, is about 80MB.

4FreeBSD Journal • November/December 2023

ple shell scripts as well as the ability to install packages. This compares favourably with simi-
lar Linux images although it doesn’t come close to the busybox-based alpine image which is
just 7.5MB.

Since then, I made a small family of images, partly inspired by the distroless project:
•	“static” which contains just SSL certificates and timezone data. This can be used as a

basis for statically linked applications.
•	“base” which extends “static” by adding a selection of shared libraries to support a wide

variety of dynamically linked applications.
•	“minimal” which adds the FreeBSD-runtime package and package management as

before
•	“small” which adds FreeBSD-utilities for broader support of shell-based applications.
To support a variety of FreeBSD versions, I embed the version into the image name,

e.g., “freebsd13.2-minimal:latest” includes packages from
the most recent version of the releng/13.2 branch while
“freebsd13-minimal:latest” is built from stable/13. I build all
these images with support for amd64 and arm64 architec-
tures and the container engine will automatically select the
correct image from the manifest list.

Security
It is important that container images can be verified that

they have a trusted origin and have not been tampered with
while they are being transferred to the container engine.

An image’s manifest typically contains the SHA256 hash-
es of the image’s data layers as well as the hash of the corre-
sponding image config. This means that the hash of the man-
ifest can be used to uniquely identify the image. This can be
used to verify the image, e.g., by listing trusted image hashes in a trustable location.

Alternatively, the hash can be used to create a signature which can prove that the image
is trusted by the owner of some public key. Two common mechanisms are in use for this —
the sigstore facility used by podman uses PGP to create an image signature and provides
a mechanism to associate a set of images with a signature store which can either be a lo-
cal directory or a trusted website. This can be used when an image is pulled to verify that it
matches the signature. An alternative to sigstore is cosign which stores the signatures along-
side the images in the image repository.

Limitations and Future Work
While these images are useful, they contain a fairly arbitrary choice of which packages

are installed. Initially, I included support for the alpha.pkgbase.live package repository which
simplified extending an image by installing extra packages. Unfortunately, this project lost
its funding and for a while, there was no publicly available pkgbase repository. Thankfully,
this has been resolved with pkgbase packages available from the standard FreeBSD package
repository.

The current mechanism for building images uses pkg to install pkgbase packages into im-
age layers. This is convenient and keeps a record of what was installed into the image. Un-
fortunately, the pkg metadata is stored in a sqlite database and this does not support

4 of 5

Alternatively, the hash
can be used to create
a signature which can
prove that the image is
trusted by the owner of
some public key.

https://github.com/GoogleContainerTools/distroless
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/building_running_and_managing_containers/assembly_signing-container-images_building-running-and-managing-containers
https://github.com/sigstore/cosign

5FreeBSD Journal • November/December 2023

reproducible builds. The sqlite database includes the timestamp a package was
installed — this can be overridden to some suitable constant time but even then,
the sqlite database is not reproducible.

A larger issue is credibility — I host these images in my own personal reposi-
tories at docker.io and quay.io but from the perspective of potential users, there
is no reason to trust that the images are trustworthy. Even though I can build im-
ages using packages from the FreeBSD package repository these images are not
signed or supported by the FreeBSD project.

In my opinion, this is a significant barrier for potential users of FreeBSD con-
tainer engines and blocks moving these projects from their current ‘experimen-
tal’ state to something which can be considered for production. This has been
confirmed with several recent conversations about supporting FreeBSD as a plat-
form for open source projects which build and use images.

Ideally, as well as hosting pkgbase package sets, the FreeBSD project should
build FreeBSD container images, either hosting an image registry or making
these images available on a public repository such as docker.io. I plan to proto-
type additions to the release building infrastructure to integrate container image
building into the existing pkgbase framework which may help to move this for-
ward.

DOUG RABSON is a Software Engineer with more than thirty years of ex-
perience ranging from 8-bit text adventure games back in the 1980s to tera-
byte-per-second distributed long aggregation systems in the 2020s. He has been
a FreeBSD project member and committer since 1994 and is currently working on
improving FreeBSD support for modern container orchestration systems such as
podman and kubernetes.

5 of 5

