
8FreeBSD Journal • March/April 2024

1 of 13

T he kernel is like any other software and is developed with the typical workflow of
clone, edit, build, test, debug, commit. But unlike userspace software, kernel develop-
ment necessarily involves repeated reboots (and lockups, and panics) and is inconve-

nient without a dedicated test system. This article describes a practical setup for kernel de-
velopment that uses virtual machines for testing and debugging.

A VM based setup for kernel development has a number of advantages:
•	Isolation. The host system is not affected by a VM reboot or crash.
•	Speed. A VM reboots much faster than a bare metal system.
•	Debuggability. VMs are easy to setup for live source-level kernel debugging.
•	Flexibility. VMs can be used to build a “network in a box” for working on networking

code without an actual physical network. eg. on a laptop in an airplane.
•	Manageability. VMs are easy to create, reconfigure,

clone, and move.

Overview
The system used to build the kernel also runs test

VMs, all of which are connected to an internal bridge.
The host provides DHCP, DNS, and other services to
the IP network configured on the bridge. The source
tree and build artifacts are all within a self-contained
work area on the host which is exported to this internal
network. The work area is mounted inside the test VM
and a new test kernel is installed from there. The VMs
have an extra serial port configured for remote kernel
debugging, with the gdb stub in the VM’s kernel con-
nected to the gdb client on the host system over a vir-
tual null modem cable.

The simplest way to set it up is to use a single system, typically a laptop or workstation,
for everything. This is the most portable development environment of all but the system
must have enough resources (CPU, memory, and storage) to build a FreeBSD source tree
and to run the VMs.

In work environments it is more common to have dedicated servers in the lab for devel-
opment and testing, separate from the developer’s workstation. Server class systems have
higher specs than desktops and are better suited for building source code and running VMs.
They also offer a wider variety of PCIe expansion slots and are suited for PCIe device driver
development.

BY NAVDEEP PARHAR

 FreeBSD
Kernel Development 	 Workflow

Unlike userspace software,
kernel development
necessarily involves
repeated reboots and
is inconvenient without
a dedicated test system.

9FreeBSD Journal • March/April 2024

desktop

Builder/VM host

src rsync

corporate network

lab test network

test connection
test connection

test connection

workspace
SoT

src trees

Internal bridge
(vmlan)

vmhost

DHCP, DNS, NFS, etc. services
Workspace (NFS exported):

src, obj, sysroot

VM0

NIC0

VM1

NIC1

VM2

NIC2

Configuration
The rest of this article assumes a two system setup and uses the hostnames ‘desktop’

and ‘builder’ to refer to them. The primary copy of the source code is on the desktop, where
it is edited by the user and then synced to the builder. The rest takes place on the builder, as
root. The builder is also known as ‘vmhost’ on its internal network.

WS=dev
DWSDIR=~/work/ws
WSDIR=/ws

All the checked out trees on the desktop are assumed to be in their own directory ${WS}
in a common parent directory ${DWSDIR}. The examples use the workspace ‘dev’ in the
‘~user/work/ws’ directory. The ${WSDIR} directory on the builder is the self-contained work
area with build configuration files, source trees, a shared obj directory, and a sysroot for gdb.
The examples use the location ‘/ws’ on the builder.

Desktop Setup

Source Tree
The FreeBSD source code is available in a git repository at https://git.FreeBSD.org/src.git.

New development takes place in the main branch and changes applicable to recent stable
branches are merged back from main after a soak-in period.

Create a local working copy by cloning a branch from the official repository or a mirror.

desktop# pkg install git

desktop$ git ls-remote https://git.freebsd.org/src.git heads/main heads/stable/*

desktop$ git clone --single-branch -b main ${REPO} ${DWSDIR}/${WS}
desktop$ git clone --single-branch -b main https://git.freebsd.org/src.git ~/work/ws/dev

2 of 13

https://git.FreeBSD.org/src.git

10FreeBSD Journal • March/April 2024

Custom KERNCONF for Development
Every kernel is built from a plain text kernel configuration (KERNCONF) file. Traditionally

a kernel’s ident string (the output of ‘uname -i’) matches the name of its configuration file.
eg. the GENERIC kernel is built from a file named GENERIC. There are a number of KERN-
CONF options for debugging and diagnostics and it is useful to have them enabled during
early development. The GENERIC configuration in the main branch already has a reason-
able subset enabled and is suitable for development work. However, modern compilers
seem to optimize away variables and other debug information aggressively, even at low op-
timization levels, and it is sometimes useful to build a kernel with all optimizations disabled.
Use the custom KERNCONF shown here, called DEBUG0, for this purpose. It is almost al-
ways simpler to include an existing configuration and use nooptions/options and nomake-
options/makeoptions to make adjustments, instead of writing one from scratch.

The DEBUG makeoptions is added to the compiler flags for both the kernel and the
modules. The stack size needs to be increased to accomodate the larger stack footprint of
unoptimized code.

desktop$ cat ${DWSDIR}/${WS}/sys/amd64/conf/DEBUG0
desktop$ cat ~/work/ws/dev/sys/amd64/conf/DEBUG0
include GENERIC
ident DEBUG0
nomakeoptions DEBUG
makeoptions DEBUG=”-g -O0”
options KSTACK_PAGES=16

Getting the Source Tree to the Builder
Copy the source tree to the builder, where it will be built as root. Remember to synchro-

nize the contents after making changes on the desktop but before building on the builder.

desktop# pkg install rsync

desktop$ rsync -azO --del --no-o --no-g ${DWSDIR}/${DWS} root@builder:${WSDIR}/src/
desktop$ rsync -azO --del --no-o --no-g ~/work/ws/dev root@builder:/ws/src/

Builder Setup

Build Configuration
Create make.conf and src.conf files in the workspace area on the builder instead of mod-

ifying the global configuration files in /etc. The obj directory is also in the workspace area
and not /usr/obj. Use meta mode for fast incremental rebuilds. Meta mode requires file-
mon. All the kernels in the KERNCONF= list will be built by default and the first one will be
installed by default. It is always possible to provide a KERNCONF on the command line and
override the default.

builder# kldload -n filemon
builder# sysrc kld_list+=”filemon”

builder# mkdir -p $WSDIR/src $WSDIR/obj $WSDIR/sysroot

3 of 13

11FreeBSD Journal • March/April 2024

builder# mkdir -p /ws/src /ws/obj /ws/sysroot

builder# cat $WSDIR/src/src-env.conf
builder# cat /ws/src/src-env.conf
MAKEOBJDIRPREFIX?=/ws/obj
WITH_META_MODE=”YES”

builder# cat /ws/src/make.conf
KERNCONF=DEBUG0 GENERIC-NODEBUG
INSTKERNNAME?=dev

builder# cat /ws/src/src.conf
WITHOUT_REPRODUCIBLE_BUILD=”YES”

Networking Configuration
Identify an unused network/mask for use as the internal network. The examples use

192.168.200.0/24. The first host (192.168.200.1) is always the VM host (the builder). Host num-
bers with two digits are reserved for known VMs. Host numbers with three digits 100 are
handed out by the DHCP server to unknown VMs.

1.	Create a bridge interface for use as a virtual switch that connects all the VMs and the
host. Assign a fixed IP address and hostname to the bridge.

builder# echo ‘192.168.200.1 vmhost’ >> /etc/hosts
builder# sysrc cloned_interfaces=”bridge0”
builder# sysrc ifconfig_bridge0=”inet vmhost/24 up”
builder# service netif start bridge0

2.	Configure the host to perform IP forwarding and NAT for its VMs. This is strictly option-
al and should be done if and only if the VMs need access to the external network. The
public interface is igb1 in the example here.

builder# cat /etc/pf.conf
ext_if=”igb1”
int_if=”bridge0”
set skip on lo
scrub in
nat on $ext_if inet from !($ext_if) -> ($ext_if)
pass out
builder# sysrc pf_enable=”YES”
builder# sysrc gateway_enable=”YES”

3.	Start ntpd on the host. The DHCP server will offer itself as an ntp server to the VMs.

builder# sysrc ntpd_enable=”YES”
builder# service ntpd start

4 of 13

12FreeBSD Journal • March/April 2024

4.	DHCP and DNS.
Install dnsmasq and configure it as a DHCP and DNS server for the internal network.

builder# pkg install dnsmasq
builder# cat /usr/local/etc/dnsmasq.conf
no-poll
interface=bridge0
domain=vmlan,192.168.200.0/24,local
host-record=vmhost,vmhost.vmlan,192.168.200.1
synth-domain=vmlan,192.168.200.100,192.168.200.199,anon-vm*
dhcp-range=192.168.200.100,192.168.200.199,255.255.255.0
dhcp-option=option:domain-search,vmlan
dhcp-option=option:ntp-server,192.168.200.1
dhcp-hostsfile=/ws/vm-dhcp.conf

Add it as the first nameserver in the local resolv.conf. The dnsmasq resolver will service
queries from the internal network and the builder’s loopback interface only.

builder# sysrc dnsmasq_enable=”YES”
builder# service dnsmasq start
builder# head /etc/resolv.conf
search corp-net.example.com
nameserver 127.0.0.1
...

5.	Export the entire work area to the internal network.

builder# cat /etc/exports
V4: /ws
/ws -ro -mapall=root -network 192.168.200.0/24
builder# sysrc nfs_server_enable=”YES”
builder# sysrc nfsv4_server_only=”YES”
builder# service nfsd start

vm-bhyve (bhyve Frontend)
vm-bhyve is an easy to use frontend for bhyve.
Identify a ZFS pool for use with the VMs and create a dataset for vm-bhyve on the pool.

Specify the name of this pool and dataset in vm_dir in rc.conf. Initialize vm-bhyve once vm_
dir is set properly.

builder# kldload -n vmm
builder# kldload -n nmdm
builder# sysrc kld_list+=”vmm nmdm”
builder# pkg install vm-bhyve
builder# zfs create rpool/vm
builder# sysrc vm_dir=”zfs:rpool/vm”
builder# vm init

5 of 13

13FreeBSD Journal • March/April 2024

builder# sysrc vm_enable=”YES”
builder# service vm start

All the VMs will use a serial console in text mode, accessible using tmux.

builder# pkg install tmux
builder# vm set console=tmux

Add the previously created bridge interface as a vm-bhyve switch.

builder# vm switch create -t manual -b bridge0 vmlan

Establish reasonable defaults for new VMs. Edit the default template at $vm_dir/.tem-
plates/default.conf as needed. Specify at least 2 serial ports—one for the serial console and
one for remote debugging. Connect all new VMs to the vmlan switch.

builder# vim /rpool/vm/.templates/default.conf
loader=”uefi”
cpu=2
memory=2G
comports=”com1 com2”
network0_type=”virtio-net”
network0_switch=”vmlan”
disk0_size=”20G”
disk0_type=”virtio-blk”
disk0_name=”disk0.img”

Seed Images
The easiest way to have FreeBSD up and running in a new VM is to seed it with a disk im-

age that has it preinstalled. The VM will boot its default kernel or a dev kernel and its user-
space needs to work with both so it is best to use the same version of FreeBSD in the VM as
the dev tree.

Disk images for releases and for recent snapshots of the main and stable branches are
available from FreeBSD.org.

fetch https://download.freebsd.org/releases/VM-IMAGES/14.0-RELEASE/amd64/Latest/FreeBSD-
14.0-RELEASE-amd64.raw.xz
fetch https://download.freebsd.org/snapshots/VM-IMAGES/15.0-CURRENT/amd64/Latest/FreeBSD-
15.0-CURRENT-amd64.raw.xz

unxz -c FreeBSD-14.0-RELEASE-amd64.raw.xz > seed-14_0.img
unxz -c FreeBSD-15.0-CURRENT-amd64.raw.xz > seed-main.img
du -Ash seed-main.img; du -sh seed-main.img
6.0G seed-main.img
1.6G seed-main.img

Disk images can also be generated from a source tree. This example shows how to build
an image with a non-debug kernel and some other space-saving options.

cd /usr/src

6 of 13

14FreeBSD Journal • March/April 2024

make -j1C KERNCONF=GENERIC-NODEBUG buildworld buildkernel
make -j1C -C release WITH_VMIMAGES=1 clean obj
make -j1C -C release WITHOUT_KERNEL_SYMBOLS=1 WITHOUT_DEBUG_FILES=1 \
 NOPORTS=1 NOSRC=1 WITH_VMIMAGES=1 VMFORMATS=raw VMSIZE=4g SWAPSIZE=2g \
 KERNCONF=GENERIC-NODEBUG vm-image

cp /usr/obj/usr/src/amd64.amd64/release/vm.ufs.raw seed-main.img
du -Ash seed-main.img; du -sh seed-main.img
6.0G seed-main.img
626M seed-main.img

Modify the vanilla image for use as a test VM on the internal network.
Create a memory disk from the image and mount the UFS partition. This will be the pre-

installed OS’s root partition when it boots inside the VM.

mdconfig -af seed-main.img
md0
gpart show -p md0
mount /dev/md0p4 /mnt

Remove hostname from rc.conf to force the one provided by the DHCP server to be used.

sysrc -R /mnt -x hostname
sysrc -R /mnt -x ifconfig_DEFAULT
sysrc -R /mnt ifconfig_vtnet0=”SYNCDHCP”
sysrc -R /mnt ntpd_enable=”YES”
sysrc -R /mnt ntpd_sync_on_start=”YES”
sysrc -R /mnt kld_list+=”filemon”

Enable ssh access to the VM out of the box. Note that this is a development environment
inside a lab network and there are no concerns about operating as root or reusing the same
host keys. Copy the host keys and root’s .ssh to the correct locations. It is convenient to use
the same keys on all the VMs. Update the sshd configuration to allow root to login and en-
able the service.

cp -a .../vm-ssh-hostkeys/ssh_host_*key* /mnt/etc/ssh/
cp -a .../vm-root-dotssh /mnt/root/.ssh
vim /mnt/etc/sshd_config
PermitRootLogin yes
sysrc -R /mnt sshd_enable=”YES”

Configure the first serial port as a potential console and the second one for remote ker-
nel debugging.

vim /mnt/boot/loader.conf
kern.msgbuf_show_timestamp=”2”
hint.uart.0.flags=”0x10”
hint.uart.1.flags=”0x80”

Create the mount point for the work area and add an entry in fstab to mount it on boot.
/dev/fd and /proc are useful in general.

7 of 13

15FreeBSD Journal • March/April 2024

mkdir -p /mnt/ws
vim /mnt/etc/fstab
...
fdesc /dev/fd fdescfs rw 0 0
proc /proc procfs rw 0 0
vmhost:/ /ws nfs ro,nfsv4 0 0

All done. Unmount and destroy the md.

umount /mnt
mdconfig -du 0

seed-main.img file is ready for use.

New Test VM
Create a new VM and note its auto-generated MAC address. Update the configuration

so that the DHCP service provides the assigned hostname and IP address to known VMs.
These statically assigned addresses must not overlap with the dhcp-range. The convention
in this article is to use 2 digit host numbers for known VMs and 3 digit host numbers for dy-
namic dhcp-range.

Create a ‘dhcp-host’ entry with the hostname assigned to the VM, its MAC address, and
a fixed IP that is not from the dynamic range. Then reload the resolver.

builder# vm create vm0
builder# vm info vm0 | grep fixed-mac-address
builder# echo ‘vm0,58:9c:fc:03:40:dc,192.168.200.10’ >> /ws/vm-dhcp.conf
builder# service dnsmasq reload

Replace the disk0.img file with a copy of the seed image and increase its size to the de-
sired disk size for the VM. A VM’s disk image can be resized this way any time the VM is not
running. Run “service growfs onestart” in the VM the first time it boots with a resized disk.

builder# cp seed-main.img /rpool/vm/vm0/disk0.img
builder# truncate -s 30G /rpool/vm/vm0/disk0.img

First Boot
Review the VM’s configuration before first boot.

builder# vm configure vm0

Start the VM with its console in the foreground, or start it in the background and then at-
tach to its console. The console is just a tmux session named after the VM.

builder# vm start -i vm0

builder# vm start vm0
builder# vm console vm0

8 of 13

16FreeBSD Journal • March/April 2024

Verify the following the first time a VM boots:
•	The VM’s hostname is the one assigned by the DHCP server. The hostname and tty are

visible on the console in the login prompt.

FreeBSD/amd64 (vm0) (ttyu0)
login:

•	The VM’s uart0 is the console and uart1 is for remote debugging.

vm0# dmesg | grep uart
[1.002244] uart0: console (115200,n,8,1)
...
[1.002252] uart1: debug port (115200,n,8,1)

•	The work area is mounted at the expected location.

vm0# mount | grep nfs
vmhost:/ on /ws (nfs, read-only, nfsv4acls)
vm0# ls /ws
...

•	The VM is reachable over ssh from the host and from the desktop (using the VM host
as the jump host).

builder# ssh root@vm0

desktop$ ssh -J root@builder root@vm0

PCIe Device Driver Development in a VM
PCI passthrough allows the host to export (pass through) PCIe devices to a VM, giving it

direct access to the PCIe device. This makes it possible to do device driver development for
real PCIe hardware inside a VM.

The device is claimed by the ppt driver on the host and appears inside the VM as if con-
nected to the VM’s PCIe root complex. The PCIe devices on a system are identified with a
BSF (or BDF) 3-tuple and it may be different inside the VM.

Use pciconf or vm-bhye to get a list of PCIe devices on the system and note the BSF tu-
ple for the ones to pass through. Note that the pciconf selector ends with BSF separated by
colons whereas bhyve/vmm/ppt use B/S/F (separted by forward slash) to identify a device.
eg. the PCIe device with the selector “none193@pci0:136:0:4” is “136/0/4” in the bhyve/ppt
notation.

builder# pciconf -ll
builder# vm passthru

Have the ppt driver claim the devices that will be passed through. This prevents the nor-
mal driver from attaching to the device.

9 of 13

17FreeBSD Journal • March/April 2024

builder# vim /boot/loader.conf
pptdevs=”136/0/4 137/0/4”

Reboot so that the loader.conf changes take effect, or try to detach the device from its
driver and attach it to ppt while the system is running.

builder# devctl detach pci0:136:0:4
builder# devctl clear driver pci0:136:0:4
builder# devctl set driver pci0:136:0:4 ppt
(repeat for 137)

Verify that the ppt driver attached to the devices and vm-bhyve is ready to use them.

builder# pciconf -ll | grep ppt
ppt0@pci0:136:0:4: 020000 00 00 1425 640d 1425 0000
ppt1@pci0:137:0:4: 020000 00 00 1425 640d 1425 0000
builder# vm passthru | awk ‘NR == 1 || $3 != “No” {print}’
DEVICE BHYVE ID READY DESCRIPTION
ppt0 136/0/4 Yes T62100-CR Unified Wire Ethernet Controller
ppt1 137/0/4 Yes T62100-CR Unified Wire Ethernet Controller

Reconfigure the test VM and list the devices that should be passed through to that VM.

builder# vm configure vm0
passthru0=”136/0/4”
passthru1=”137/0/4”

Start the test VM and verify that the PCIe devices are visible. Note that the BSFs in the
VM are different from the actual hardware BSFs in the host.

vm0# pciconf -ll
...
none0@pci0:0:6:0: 020000 00 00 1425 640d 1425 0000
none1@pci0:0:7:0: 020000 00 00 1425 640d 1425 0000
...

Main Workflow Loop (edit, build, install, test, repeat)

Edit
Edit the source tree on the desktop and sent it to the builder.

desktop$ cd ~/work/ws/dev
desktop$ gvim sys/foo/bar.c
...
desktop$ rsync -azO --del --no-o --no-g ~/work/ws/dev root@builder:/ws/src/

Build

builder# alias wsmake=’__MAKE_CONF=${WSDIR}/src/make.conf SRC_ENV_CONF=${WSDIR}/src/src-
env.conf SRCCONF=${WSDIR}/src/src.conf make -j1C’

10 of 13

18FreeBSD Journal • March/April 2024

builder# alias wsmake=’__MAKE_CONF=/ws/src/make.conf SRC_ENV_CONF=/ws/src/src-env.conf SRC-
CONF=/ws/src/src.conf make -j1C’

builder# cd ${WSDIR}/src/${WS}
builder# cd /ws/src/dev
builder# wsmake kernel-toolchain (one time)
builder# wsmake buildkernel

Install
1.	Install kernel in the VM. INSTKERNNAME is set in make.conf so the test kernel in /

boot/${INSTKERNNAME} will not interfere with the stock kernel in /boot/kernel, which
is the safe fallback if there are problems with the test kernel. It can be specified explicitly
on the command line too.

vm0# alias wsmake=’__MAKE_CONF=${WSDIR}/src/make.conf SRC_ENV_CONF=${WSDIR}/src/src-
env.conf SRCCONF=${WSDIR}/src/src.conf make -j1C’
vm0# alias wsmake=’__MAKE_CONF=/ws/src/make.conf SRC_ENV_CONF=/ws/src/src-env.conf
SRCCONF=/ws/src/src.conf make -j1C’

vm0# cd ${WSDIR}/src/${WS}
vm0# cd /ws/src/dev
vm0# wsmake installkernel

2.	Install to the builder’s sysroot too if gdb on the builder will be used for source level de-
bugging. Use the same INSTKERNNAME and KERNCONF as in the VM.

builder# cd /ws/src/dev
builder# wsmake installkernel DESTDIR=/ws/sysroot

Test
Select the test kernel for the next reboot only, or permanently.

vm0# nextboot -k ${WS}
vm0# nextboot -k dev
vm0# shutdown -r now

vm0# sysrc -f /boot/loader.conf kernel=”${WS}”
vm0# sysrc -f /boot/loader.conf kernel=”dev”
vm0# shutdown -r now

It is a good practice to use a debug KERNCONF (eg. the custom DEBUG0 shown earlier
or the GENERIC in main) for initial testing and later switch to a release kernel (eg. the GE-
NERIC-NODEBUG in main).

11 of 13

19FreeBSD Journal • March/April 2024

Debugging the Test Kernel
Verify that the test kernel is running currently.

vm0# uname -i
DEBUG0
vm0# sysctl kern.bootfile
kern.bootfile: /boot/dev/kernel

Backends
There are two debugger backends available and the current backend can be changed on

the fly.

vm0# sysctl debug.kdb.available
vm0# sysctl debug.kdb.current

vm0# sysctl debug.kdb.current=ddb
vm0# sysctl debug.kdb.current=gdb

Breaking into the Debugger
1.	Automatically, on a panic. If this sysctl is set the kernel will enter the debugger (instead

of rebooting) on panic.

vm0# sysctl debug.debugger_on_panic

2.	Manually, from inside the VM.

vm0# sysctl debug.kdb.enter=1

3.	Manually, from the VM host. Inject an NMI into the VM if it is locked up and not re-
sponding.

builder# bhyvectl --vm=vm0 --inject-nmi

Source Level Debugging with gdb
Source level debugging requires the source code, binaries, and debug files, all of which

are available on both the host and the VMs, but at different locations.

Live Remote Debugging
Make sure that the debug backend is set to gdb. If the VM has already entered the de-

bugger with the ddb backend, switch to the gdb backend interactively.

vm0# sysctl debug.kdb.current=gdb

db> gdb

The remote gdb stub in the kernel is active when the kernel enters the debugger. Con-
nect to the gdb stub from the host. The connection takes place over a virtual null modem
cable connected to the VM’s second serial port (uart1 inside the VM).

12 of 13

20FreeBSD Journal • March/April 2024

builder# gdb -iex ‘set sysroot ${WSDIR}/sysroot’ -ex ‘target remote /dev/nmdm-${VM}.2B’
${WSDIR}/sysroot/boot/${INSTKERNNAME}/kernel
builder# gdb -iex ‘set sysroot /ws/sysroot’ -ex ‘target remote /dev/nmdm-vm0.2B’ /ws/sys-
root/boot/dev/kernel

Core Dump Analysis
Same as live debug except the target is a vmcore instead of remote.

builder# gdb -iex ‘set sysroot ${WSDIR}/sysroot’ -ex ‘target vmcore ${VMCORE}’ ${WSDIR}/
sysroot/boot/${INSTKERNNAME}/kernel

builder# scp root@vm0:/var/crash/vmcore.0 /ws/tmp/
builder# gdb -iex ‘set sysroot /ws/sysroot’ -ex ‘target vmcore /ws/tmp/vmcore.0’ /ws/sys-
root/boot/dev/kernel

NAVDEEP PARHAR has been a FreeBSD user for 20+ years and a FreeBSD developer since
2009. He is employed by Chelsio Communications to work on FreeBSD software for Chel-
sio Terminator family of NICs. He’s the author and maintainer of the cxgbe(4) driver and
his areas of interest include the networking stack, device drivers, general kernel debug and
analysis.

13 of 13

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

Contents

