
28FreeBSD Journal • May/June 2024

1 of 8

The FreeBSD Project recently started supporting GitHub pull requests (PRs) to make it
easier to contribute. We found that accepting patches via our bug tracker Bugzilla re-
sulted in far too many useful contributions being ignored and growing stale, so con-

tributors should prefer GitHub PRs for changes, leaving bugs in Bugzilla. While Phabricator
works well for developers, we’ve also found it’s easy to lose track of changes from outside
contributors there. Unless you are working directly with a FreeBSD developer who has told
you to use Phabricator, please use GitHub instead. GitHub PRs are easier to track, easier to
process, and more familiar to the wider open source community. We hope for faster deci-
sions, fewer dropped changes, and a better experience for all.

Since FreeBSD’s volunteers have limited time, The
Project has developed standards, norms, and policies
to use their time efficiently. You’ll need to understand
these to submit a good PR. We have some automa-
tion which helps submitters fix the common mistakes,
allowing the volunteers to review nearly ready submis-
sions. Please understand we can only accept the most
useful contributions and some contributions cannot be
accepted.

Next, I’ll cover how to turn your changes into a Git
branch, how to refine them to meet the FreeBSD Proj-
ect’s standards and norms, how to make a PR from
your branch, and what to expect from the review pro-
cess. Then I’ll cover how volunteers evaluate PRs and
tips for perfecting your PR.

This article focuses on commits to the base system, not the documentation or ports
trees. These teams are still revising the details for these repositories.

Project Standards
The Project has detailed standards for various aspects of the system. These standards

are described in the FreeBSD Developer’s Handbook and the FreeBSD Committer’s Guide.
Coding standards are documented in FreeBSD manual pages. By convention, manual pag-
es are divided into sections. All the style manual pages are in section 9 for historical reasons.
References to manual pages are traditionally rendered as the name of the page, followed by
its section number in parentheses, for example style(9) or cat(1). This documentation is avail-
able on any FreeBSD system with the man command, or online.

BY WARNER LOSH

We hope pull requests
make it easier to get
changes into FreeBSD and
provide quick decisions
when there are issues.

Submitting
	 GitHub Pull Requests
	 to FreeBSD

https://docs.freebsd.org/en/books/developers-handbook/
https://docs.freebsd.org/en/articles/committers-guide/
https://man.freebsd.org

29FreeBSD Journal • May/June 2024

The Project strives to produce a well-documented integrated system that covers both a
kernel that controls the machine as well as a user-space implementation of common Unix
utilities. Contributions should be well written with relevant comments. They should include
updates to the relevant manual pages when the behavior changes. When you add a flag to a
command, for example, it should be added to the manual page as well. When new functions
are added to a library, new man pages should be added for the functions. Finally, The Proj-
ect views the metadata in the source code control system part of the system, so commit
messages should conform to the project’s standards.

The Project’s Standard for C and C++ code is described in style(9). This style is often re-
ferred to as “Kernel Normal Form” and is adopted from the style used in Kernighan and
Ritchie’s The C Programming Language. It’s the standard that research unix used, as contin-
ued within the CSRG at Berkelely who produced the BSD releases. The FreeBSD project has
modernized these practices over the years. This style is the preferred style for contributed
code, and describes the style used in most of the sys-
tem. Contributions which change this code should fol-
low this style except for a few files that have their own
style. Lua and Makefiles also have their own standards,
found in style.lua(9) and style.Makefile(9) respectively.

Commit messages follow the form favored by the
Open Source communities that use git. The first line
of the commit message should summarize the entire
commit, but do so in 50 or so characters. The rest of
the message should describe what changed and why.
If what changes is obvious, only explaining why is pre-
ferred. The lines should be 72 characters or fewer. It
should be written in the present tense, with an imperative tone. It ends with a series of lines
that Git calls “trailers” which The Project uses to track additional data about the commits:
where they came from, where details about the bug can be found, etc. The Commit Log
Message section of the Committer’s Guide covers all the details.

Unacceptable Changes
After a few years of experimenting with accepting changes via GitHub, The Project has

had to establish some limits to accepting contributions via GitHub from people who have
not yet earned write access to the project’s repositories. These limits ensure that the volun-
teers that verify and apply the changes to make the best use of their time. Consequently,
The Project is unable to accept:

•	Changes too large to review on GitHub
•	Typos in comments
•	Changes discovered by running static analyzers over the tree (unless they include new

test cases for the bugs the static analyzers found). Exceptions can be made on a case-
by-case basis for “obviously correct” fixes in parts of the system that do not interact
well with our testing harness.

•	Changes that are theoretical, but have no specific bug or articulable behavior defect.
•	Performance optimizations that aren’t accompanied by before / after measurements

to show improvement. Micro-optimizations are rarely worth it, as compiler and CPU
technology often makes them obsolete (or even slower) in only a few years.

2 of 8

Contributions should be
well written with relevant
comments.

https://docs.freebsd.org/en/articles/committers-guide/#commit-log-message

30FreeBSD Journal • May/June 2024

•	Changes that are contentious. These need to be socialized on the freebsd-arch@
freebsd.org or most appropriate mailing list first. GitHub provides a poor forum for
discussing these sorts of issues.

PRs should make the Project better in some, user-visible way.

Evaluation Criteria
•	Is the change one that the Project is accepting?
•	Is the scope/scale of the change good?

•	Are there a reasonable number of commits (say less than 20)?
•	Are each of the commits a reviewable size (say less than 100 lines)?

•	Does C and C++ code confirm to style(9) (or the file’s current style)
•	Do changes to lua confirm to style.lua(9)
•	Do changes to Makefiles conform to style.Makefile(9)
•	Do changes to man pages pass both mdoc -Tlint and igor?
•	Have contentious changes been discussed in the proper mailing list?
•	Does make tinderbox run successfully?
•	Do the changes fix a specific, articulable problem or add a specific feature?
•	Are the commit messages good?

While avoiding these pitfalls:
•	Do the changes introduce new test regressions?
•	Do the changes introduce behavior regressions?
•	Do the changes introduce a performance regression?

Overview of the Process
At a high level, contributing to FreeBSD is a straightforward process, though getting into

the details can obscure this simplicity.

FreeBSD Developer

FreeBSD Infrastucture

Github/Contributor

Developler
repo

Github FreeBSD
FreeBSD–src repo

Github fork of
FreeBSD–src repo

Staging Area
(also developer repo)

5. Developer downloads
 Pull Request

4. Pull Request

FreeBSD cgit
src repo1. main

 mirroring

2. main
 mirroring

3. fork

6. main
 commits

Basic Flow of Commits

1.	FreeBSD developers push commits directly to the FreeBSD repository, which is hosted
in the FreeBSD.org cluster.

2.	Every 10 minutes, the FreeBSD src repository is mirrored to the freebsd-src GitHub
repo.

3.	A user wanting to create a PR will create a branch in their fork of the freebsd-src repo
4.	The changes on a user branch are used to create a FreeBSD PR.
5.	A FreeBSD developer reviews the PR, provides feedback, and may request changes

from the user.
6.	A FreeBSD developer will push the changes into the FreeBSD src repo.

3 of 8

31FreeBSD Journal • May/June 2024

Prepping for Submitting Pull Requests
You’ll need to create a GitHub account, if you don’t already have one. This link will walk

you through the process of creating a new GitHub account. Since many people already have
a GitHub account for other reasons, we’ll skip delving into the details.

The next step is forking FreeBSD’s repository into your account. Using the Github web
interface is the easiest way to create a fork and to explain since you will only need to do
this once. Changes to your fork do not affect FreeBSD’s repo. Users can fork repositories
by clicking the “Fork’’ button as shown in Figure 1. You will want to click on the highlighted
“Create a new fork” menu item. This will bring up a screen similar to Figure 2. From here,
click the green “Create Fork” button.

Figure 1: After clicking the down arrow next to Fork, you’ll see a pop-up for the create fork dialog.

Figure 2: Creating a Fork, part 2.

4 of 8

https://github.com/join

32FreeBSD Journal • May/June 2024

Once you click on “Create Fork,” the GUI will redirect to the newly forked repository. You
can copy the URL you need to clone the repository in the usual spot, shown in Figure 3.

Figure 3: Copying the URL to clone (I forked ages ago with old repo name)

This concludes the steps you’ll do with the GitHub web interface. The rest of these com-
mands will be done in a terminal window for a host running FreeBSD. For simplicity, the
screen shots have changed to the commands or the commands and the output produced
by those commands.

Clone your newly created repository using the commands below.

% git clone
Cloning into 'freebsd-src'...
remote: Enumerating objects: 3287614, done.
remote: Counting objects: 100% (993/993), done.
remote: Compressing objects: 100% (585/585), done.
remote: Total 3287614 (delta 412), reused 815 (delta 397), pack-reused 3286621
Receiving objects: 100% (3287614/3287614), 2.44 GiB | 22.06 MiB/s, done.
Resolving deltas: 100% (2414925/2414925), done.
Updating files: 100% (100972/100972), done.
% cd freebsd-src

5 of 8

33FreeBSD Journal • May/June 2024

Please note you should change “user” in the above command to your GitHub username.
The “-o github” will name this remote “github,” which will be used in the examples below.

The PR workflow generally requires a branch. We’ll assume you’ve followed something
like the following commands, though there are many ways to use a pre-existing branch that
are beyond the scope of this article.

% git checkout -b journal-demo
% # make changes, test them etc
% git commit

It is important that all the commits you make have your real name and email address as
the “Author” of the commit. Git has two configuration fields for this. user.name contains
your real name. And user.email has your email address. You can set them like so:

% git config --global user.name “Pat Bell”
% git config –global user.email “pbell@example.com”

In addition, please read our advice on Commit Log Messages and follow it when creating
commits.

Most changes we get via PRs are small, so we’ll move on to submitting them. However, if
you have large changes, please read the Evaluation Criteria below before submitting for a
smoother process.

Submitting Your Pull Request
The next step is to push the journal-demo branch to GitHub (as with the above, substi-

tute your GitHub username for “user” below:

% git push github
Enumerating objects: 24, done.
Counting objects: 100% (24/24), done.
Delta compression using up to 8 threads
Compressing objects: 100% (16/16), done.
Writing objects: 100% (16/16), 5.21 KiB | 1.74 MiB/s, done.
Total 16 (delta 13), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (13/13), completed with 8 local objects.
remote:
remote: Create a pull request for ‘journal-demo’ on GitHub by visiting:
remote: 	https://github.com/user/freebsd-src/pull/new/journal-demo
remote:
To github.com:user/freebsd-src.git
 * [new branch] 	 journal-demo -> journal-demo

You’ll notice that GitHub helpfully tells you how to create a pull request. When you visit
the above URL, you’re presented with a blank form, as shown in Figure 4.

6 of 8

https://docs.freebsd.org/en/articles/committers-guide/#commit-log-message

34FreeBSD Journal • May/June 2024

Figure 4: Pull request submission form.

In the “Add a Title” field, add a brief description of your work that conveys the essence
of the changes. Keep this to about a dozen words, so it’s easy to read. If the branch has only
one commit, use the first line of the commit message for that change here. If it’s multiple
commits, you’ll need to summarize them into one short title.

In the “Add a Description” field, write a summary of your changes. If this is a branch with
just one commit, use the body of the commit message here. If there are multiple commits,
then create a brief summary which briefly describes the problem solved. Explain what you
changed and why, if it isn’t obvious.

The example in Figure 4 attempts to address a famous historical dispute between Bell
Labs and Berkeley. It is a good example of a contentious commit outlined below. It is a good
example of a contentious commit that should be socialized.

What to Expect
After your submission, the evaluation process begins. Several automated checkers will

run. These make sure that the format and style of your submission conform to our guide-
lines. They ensure that the proposed changes compile. They will provide feedback for
changes you should make before someone looks at it. Some of these tests take time, so
checking back a few hours after your submission is a good idea. Items flagged by the auto-
mated testing will be among the first things our volunteers will ask you to correct, so it saves
everybody time to proactively address them.

Replying to Feedback
Once you’ve received feedback, oftentimes code changes are required. Please make the

changes that were suggested. Usually this means that you’ll have to edit some subset of your
changes (either commit messages, or the commits themselves). GitLab has a good tutorial
on the mechanics of using git rebase.

7 of 8

https://docs.gitlab.com/ee/topics/git/git_rebase.html

35FreeBSD Journal • May/June 2024

Once you’re made your changes, you’ll need to push the changes back to your branch so
the PR updates and the feedback loop starts over:

% git push github --force-with-lease

Supply Chain Attacks
Recently, a bad actor attacked the xz source base to insert code that compromised sshd

on certain Linux systems. FreeBSD was unaffected by this attack due to a combination of
luck and process. Our process is designed to resist such attacks by having multiple layers of
protection. We review code before we allow it to be tested. We only run automated testing
when it’s clear there’s no obvious mischief in the submissions. Questions that might seem
unnecessary are often motivated by the increasingly hostile work environment with which
open source projects must cope.

Wrapping up
Whether you are a casual user that has an occasional tweak to make FreeBSD better, or

a more intense developer who submits so many changes that you’ll earn a commit bit, the
Project welcomes your submissions. This article tries to cover the basics of doing this, but is
more geared to the causal user. The online resources will help for situations beyond the ba-
sics.

WARNER LOSH has been contributing to open source since before the FreeBSD project
existed or the term “open source” was formally defined. He’s recently been delving into the
early history of Unix to discover its rich, hidden legacy. He lives in Colorado with his wife and
daughter in a strawbale house heated by the sun, a small boiler, and the occasional antique
computer.

8 of 8

