
 July/August 2024

NVMe Over Fabrics
in FreeBSD
FreeBSD iSCSI Primer
Protecting Data with
ZFS Native Encryption
Rolling Your Own Images
Introduction to TCP
Large Receive Offload

Storage and Filesystems

Nov/Dec 2019 57

November/December 2022

Writing Custom
Commands in FreeBSD’s
DDB Kernel Debugger

DTrace: New Additions
to an Old Tracing System

Certificate-based
Monitoring with Icinga

activitymonitor.sh

Pragmatic IPv6 (Part 4)

Observability and Metrics

2024 Editorial Calendar
• Networking

(January-February)

• Development Workflow and CI (March-April)

• Configuration Management Showdown

(May-June)

• Storage and File Systems (July-August)

• Kernel Development (September-October)

• Virtualization (November-December)

https://www.freebsdfoundation.org/journal

LETTER
from the Foundation

J O U R N A L
®

Editorial Board
John Baldwin • Member of the FreeBSD Core Team and

 Chair of FreeBSD Journal Editorial Board

Tom Jones • FreeBSD Developer, Internet Engineer
 and Researcher at the University of
 Aberdeen

Ed Maste • Senior Director of Technology,
FreeBSD Foundation and Member
of the FreeBSD Core Team

Benedict Reuschling • FreeBSD Documentation Committer
and Member of the FreeBSD Core Team

Jason Tubnor • BSD Advocate, Senior Security Lead
at Latrobe Community Health Service
(NFP/NGO), Victoria, Australia

Mariusz Zaborski • FreeBSD Developer

Advisory Board
Anne Dickison • Director of Communications, Events,

and Operations, FreeBSD Foundation

Justin Gibbs • Founder of the FreeBSD Foundation,
President and Treasurer of the FreeBSD
Foundation Board

Allan Jude • CTO at Klara Inc., the global FreeBSD
Professional Services and Support

 company

Dru Lavigne • Author of BSD Hacks and
The Best of FreeBSD Basics

Michael W Lucas • Author of more than 40 books including
 Absolute FreeBSD, the FreeBSD
 Mastery series, and git commit murder

Kirk McKusick • Lead author of The Design and
 Implementation book series

George Neville-Neil • Past President of the FreeBSD Foundation
Board, and co-author of The Design
and Implementation of the FreeBSD
Operating System

Hiroki Sato • Director of the FreeBSD Foundation
Board, Chair of AsiaBSDCon,
and Assistant Professor at Tokyo
Institute of Technology

Robert N. M. Watson • Director of the FreeBSD Foundation
Board, Founder of the TrustedBSD
Project, and University Senior Lecturer
at the University of Cambridge

S&W PUBLISHING LLC
PO BOX 3757 CHAPEL HILL, NC 27515-3757

 Editor-at-Large • James Maurer
 maurer.jim@gmail.com

 Design & Production • Reuter & Associates

FreeBSD Journal (ISBN: 978-0-61 5-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-51 42 • fax: 720/222-2350

email: info@freebsdfoundation.org

Copyright © 2024 by FreeBSD Foundation. All rights reserved.
This magazine may not be reproduced in whole or in part without written

permission from the publisher.

3FreeBSD Journal • July/August 2024

Welcome to the July/August edition of the
FreeBSD Journal! As I write this, summer is
drawing to a close, and we’re transitioning

into the fall season. Since my last letter, FreeBSD has
welcomed a new core team, and version 14.1 has been
officially released. Our release engineer, Colin Percival,
has also shared a schedule for upcoming releases,
with 13.4 nearing completion and 14.2 expected by the
end of the year. In May, during BSDCan, the Journal’s
editorial board gathered to plan our issues for the
coming year. We are thrilled by the vibrant activity
within the FreeBSD community and the compelling
stories we’re privileged to bring you in these pages.

This issue’s theme is Storage on FreeBSD. Jason
Tubnor and I kick things off with introductions to
two network block storage protocols supported by
FreeBSD: iSCSI and NVMe over Fabrics. Roller Angel
then takes us through ZFS native encryption, exploring
how it ensures data security. And in this issue’s columns,
Christopher Bowman continues his series with insights
on using FreeBSD in embedded environments, while
Randall Stewart and Michael Tüxen break down TCP
LRO. Benedict Reuschling explains how to use Samba
for Time Machine backups, and Michael Lucas provides
his usual entertaining commentary.

On the conference front, Aymeric Wibo shares
his experience at BSDCan 2024. Looking ahead,
EuroBSDCon 2024 is just a couple of weeks away in
Dublin, Ireland, and the FreeBSD Fall Summit will be
held at NetApp’s campus in San Jose, California, in
November. Members of the editorial board will be
attending both events, and we always welcome the
opportunity to chat.

We love hearing from readers. If you have feedback,
article suggestions, or are interested in contributing,
please reach out to us at info@freebsdjournal.com.

John Baldwin
Chair of the FreeBSD Journal Editorial Board

mailto:info@freebsdjournal.com

Storage and Filesystems

4FreeBSD Journal • July/August 2024

July/August 2024

 8 NVMe Over Fabrics in FreeBSD
 By John Baldwin

 14 FreeBSD iSCSI Primer
 By Jason Tubnor

 20 Protecting Data with ZFS Native
Encryption

 By Roller Angel

 3 Foundation Letter
By John Baldwin

 5 We Get Letters
by Michael W. Lucas

 24 Embedded FreeBSD:
 Rolling Your Own Images

By Christopher R. Bowman

 28 Adventures in TCP/IP:
 Introduction to TCP Large Receive Offload

By Randall Stewart and Michael Tüxen

 33 Practical Ports: Samba-based
 Time Machine Backups

By Benedict Reuschling

 38 Conference Report: BSDCan 2024
By Aymeric Wibo

 41 Events Calendar
By Anne Dickison

Dear Least Helpful Technology Columnist,

AI is everywhere. Software companies are adding
it to their products. Should I be concerned about my
career?

— Worried

Dear Worried,
Proper consideration of your question demands carving away all evasions, mistruths, and

outright deceptions. Marketing calls any kind of an algorithm AI. Ask them, and Unix is an
AI. The Microsoft Excel SUM function? The peak in AI reliability. Every AI puts people out of
work — after all, once upon an aeon calculator was a job title and changing a spreadsheet
required man-hours of labor. But I’m going to assume that you mean “generative AI,” par-
tially because if your job could be done by the SUM function you wouldn’t know about this
column, but also because it will grant me the opportunity to threaten multimillion-dollar
companies.

You have already faced the threat posed
by generative AI. While you will never defeat
it, that threat guarantees your future em-
ployment.

Once upon a time there was this per-
son who vexed me so badly, I had to write a
book just to complain about them. (Not why
I wrote the book, nor why I griped about
them therein.) My fierce vituperation was so
all-encompassing, they not only changed
their name but their gender so they could
attempt to rebuild something from the ru-
ins of their reputation. (Totally not why they changed their name. Nor their gender.) Now I’m
gonna tell you about working with Delta. (Not that we ever actually worked together. They’re
just an example person. Libel laws prevent me from explicitly naming Gabriel, though he will
hopefully recognize himself. That new emotion you’ve never experienced before, Gabriel?
It’s called shame.)

You probably have a preferred public discussion platform for technical matters, some-
thing like Reddit, the Fediverse, or the penal board web forum. Delta’s that person who when
they see someone ask a question, they search Google and post the first link it vomits up
even though it clearly says “sponsored.” When the Detroit-Farawayistan optical fiber goes

1 of 3

You have already faced the
threat posed by generative AI.

5FreeBSD Journal • July/August 2024

by Michael W Lucas

bad, Delta offers to re-terminate the RJ45s. When someone says, “Have you tried giving the
customer what they want?” or “it made too much heat so I unplugged it,” that’s Delta.

The Deltas of this fallen world give us the valuable opportunity to learn to route around
damage.

Generative AI is, by definition, a less competent Delta.
These “generative artificial intelligences” scour the Internet collecting text strings and

noting which characters often appear in which order. The programmers heard the phrase
“the wisdom of crowds” and thought it wasn’t satire. When you enter a string into the sys-
tem, they produce a string that looks like something that would appear after your string. In
other words, if you enter something that looks like a StackExchange question, they provide
an answer that looks like something you would get from StackExchange. The average an-
swer on any public technology forum is a poison to the spirit that makes my Perl look glam-
orous. Not Hollywood glamour. More like
Eldritch Faery Queen Glamour that winds
up with you chained to your keyboard con-
demned to write for the entertainment of
the Unseelie Court until you become the
greatest author on Earth, which would give
you lots of practice, but as you no longer re-
ceive books from Earth you can’t perform
the comparison that would conclude your
deal. Still, don’t do that. The Faery Queen
carries one heck of a grudge, especially if
you smuggled lockpicks in with you.

Yes, you can find good information on
the Internet. But it’s never in the first search engine result. It’s probably not in your first que-
ry. Beating useful information out of the Internet is a skill developed through years of neg-
ative reinforcement, and one that these generative engines lack. The Internet contains tiny
slivers of wisdom entombed amidst vast mounds of festering mediocrity, seasoned with
inanity. Generative AI uses several buildings jammed with GPUs, several megawatts of pow-
er, and enough clean water to irrigate a small nation to emulate a fresh college grad who
really hopes potential employers don’t notice his 2.0001 “pity pass” GPA through their chal-
lenging Bachelor of Arts in General Studies, or that he’s been banned from every library
within bicycling distance for Extreme Bigotry. What’s not to like, other than authors such
as myself joining in one of the innumerable copyright violation lawsuits being assembled
against these AI firms?

So no, you don’t need to fear generative AI.
You must improve your skill at working around damage.
How did you cope with your Delta? Perhaps you offered a glowing performance review

so they could be shunted harmlessly into Human Resources. Or you could have persuaded
them to accept the valuable assignment of hexhead screw auditor. Maybe you sent them
into the Hall of Backup Tapes with a ball of string so they could find their way back but want-
ed them to be safe on that most perilous of journeys, and so you tested the string for flam-
mability and discovered to your “dismay” that it went up like flash paper forever marooning
them amongst the reels of paper tape. I won’t judge, unless the string burned left a trail of
ash. You had a problem, you dealt with it in the least illegal manner possible.

2 of 3

Generative AI is, by definition,
a less competent Delta.

6FreeBSD Journal • July/August 2024

Someone in your organization will catch AI Fever and look to convert your company’s
worthless payroll into precious payments to AI firms. The simplest way to avoid this is to re-
member that you already use AI. Somewhere you have a spreadsheet, right? Make sure it
adds the numbers for you and boom — AI! It’s not a lie. After all, marketing said it was AI
and they wouldn’t lie. The proper invocation of grep and awk can provide more intelligence
than any of these firms.

If people insist on using generative AI, grab one of the freely available models and train
it on your company’s document store. You have decades of badly written emails, proposals,
and white papers that can easily compete with the delusional ramblings available on Stack-
Exchange. That will let you illustrate that no matter how appalling the average employee is,
generative AI is worse.

Suppose the worst happens. A decree comes down from management to deploy gener-
ative AI. Solve two problems simultaneously, and have Delta deploy it.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS is the author of Absolute FreeBSD, SSH Mastery, and the brand-new
Run Your Own Mail Server. His collection of these columns, Dear Abyss, is coming to
https://mwl.io/ks at any moment.

3 of 3

Books that will
 help you.

While we appreciate Mr Lucas’ unique
contributions to the Journal, we do feel his
specific talents are not being fully utilized. Please
buy his books, his hours, autographed photos,
whatever, so that he is otherwise engaged.

— John Baldwin
FreeBSD Journal Editorial Board Chair

“
”

Or not.

https://mwl.io

7FreeBSD Journal • July/August 2024

mailto:letters@freebsdjournal.org
https://mwl.io/ks
https://mwl.io

8FreeBSD Journal • July/August 2024

1 of 6

NVM Express (NVMe) is a recent standard providing access to non-volatile memory block
storage devices such as SSDs. NVMe was originally defined to access non-volatile memo-
ry devices via PCI-express. This includes register definitions for the PCI-express controller
device, the layout and structure of command submission and completion queues stored in
main memory, and sets of commands.

The base NVMe specification defines an Admin Command Set used on a single ad-
min submission and completion queue pair associated with each controller. Administrative
commands do not handle I/O requests. Instead, these commands are used to create I/O
queues, fetch auxiliary data such as error logs, format storage devices, etc. Storage devices
in NVMe are called namespaces and commands for a specific namespace include a name-
space ID. The base specification also defines an NVM Command Set used for I/O requests
to block-oriented namespaces. The specification is de-
signed for future extensions including additional I/O
command sets (e.g. an I/O command set targeting a
key-value store). An NVMe controller and its attached
namespaces together are called an NVM subsystem.

NVMe over Fabrics extends the original specifica-
tion to enable access to NVM subsystems over a net-
work transport instead of PCI-express similar to using
iSCSI to acccess remote block storage devices as SCSI
LUNs. NVMe over Fabrics supports multiple trans-
port layers including FibreChannel, RDMA (over both
iWARP and ROCE) and TCP. To handle these different
transports, Fabrics includes both transport-indepen-
dent extensions to the base NVMe specification as well
as transport-specific bindings.

Fabrics defines a new capsule abstraction to support NVMe commands and comple-
tions. Each capsule contains either an NVMe command or completion. In addition, a cap-
sule may be associated with a data buffer. To support data transfers, the existing PRP entries
in NVMe commands are replaced with a single NVMe SGL entry. Fabrics also replaces the
shared-memory queues used for PCI-express controllers with logical completion and sub-
mission queues. Unlike PCI-express I/O queues, Fabrics queues are always explicitly paired
with each submission queue tied to a dedicated completion queue. The details of how cap-

BY JOHN BALDWIN

NVMe
Over Fabrics

in FreeBSD

NVMe over Fabrics
extends the original
specification to
enable access to
NVM subsystems over
a network transport.

9FreeBSD Journal • July/August 2024

sules and data buffers are transmitted and received on a queue pair are transport-specific,
but in abstract terms, command capsules are transferred on submission queues, and com-
pletions are transferred on completion queues.

A Fabrics host creates an admin queue pair and one or more I/O queue pairs connected
to a controller. A complete set of queue pairs is called an association. A single association
may contain multiple transport-specific connections. For example, the TCP transport uses a
dedicated connection for each queue pair, so an active TCP association requires at least two
TCP connections.

In addition to I/O controllers which provide access
to namespaces, Fabrics adds a discovery controller
type. A discovery controller supports a new discovery
log page which describes the set of controllers avail-
able in a Fabrics NVM subsystem. The log page may
include one or more I/O controllers and/or references
to discovery controllers in other subsystems. The log
page may include multiple entries for a single control-
ler if a controller can be accessed via multiple trans-
ports. Each log page entry contains the type of a con-
troller (I/O or discovery) as well as the transport type
and transport-specific address. For the TCP transport
the address includes the IP address and TCP port
number.

Fabrics hosts and controllers are identified by an
NVMe Qualified Name (NQN). NQNs are an ASCII string which should start with “nqn.
YYYY-MM.reverse-domain” followed by an optional trailer. The reverse-domain portion of
the name should be a valid DNS name in reverse order, and the YYYY and MM fields should
specify a valid year and month when the DNS name was owned by the organization using
the prefix. The specification defines a fixed subsystem NQN for Discovery controllers as
well as a scheme for constructing a NQN from a UUID. Both the host and subsystem (con-
troller) NQNs must be specified when establishing an association.

FreeBSD 15 includes support for accessing remote namespaces via a host kernel driver
as well as support for exporting local storage devices as namespaces to remote hosts. The
kernel implementation of Fabrics includes a transport abstraction layer (provided by nvmf_
transport.ko) to hide most of the transport-specific details from the host and controller
modules. This module is auto-loaded as needed. Separate kernel modules provide support
for individual transports. These modules must be explicitly loaded to enable use of a trans-
port. Currently, FreeBSD includes support for the TCP transport via nvmf_tcp.ko. TCP spe-
cific details are documented in nvmf_tcp(4).

Host
The Fabrics host in FreeBSD consists of new nvmecontrol(8) commands and an nvmf(4)

kernel driver. The kernel driver exposes remote controllers as nvmeX new-bus devices simi-
lar to PCI-express NVMe controllers. Remote namespaces are exposed via nda(4) disk devic-
es via CAM. Unlike the PCI-express nvme(4) driver, the Fabrics host driver does not support
the nvd(4) disk driver. All of the new nvmecontrol(8) commands use a host NQN generated
from the host’s UUID unless an explicit host NQN is given.

2 of 6

A Fabrics host creates
an admin queue pair
and one or more
I/O queue pairs connected
to a controller.

https://man.freebsd.org/nvmf_tcp/4
https://man.freebsd.org/nvmecontrol/8
https://man.freebsd.org/nvmf/4
https://man.freebsd.org/nda/4
https://man.freebsd.org/nvme/4
https://man.freebsd.org/nvd/4

10FreeBSD Journal • July/August 2024

Discovery Service
The nvmecontrol(8) discover command queries the discovery log page from a discov-

ery controller and displays its contents. Example 1 shows the log page from a Fabrics con-
troller running on a Linux system. For the TCP transport, the service identifier field identifies
the TCP port of the remote controller.
Example 1: The Discovery Log Page from a Linux Controller

nvmecontrol discover ubuntu:4420# nvmecontrol discover ubuntu:4420
Discovery
=========
Entry 01
========
 Transport type: TCP
 Address family: AF_INET
 Subsystem type: NVMe
 SQ flow control: optional
 Secure Channel: Not specified
 Port ID: 1
 Controller ID: Dynamic
 Max Admin SQ Size: 32
 Sub NQN: nvme-test-target
 Transport address: 10.0.0.118
 Service identifier: 4420
 Security Type: None

Connecting To an I/O Controller
The nvmecontrol(8) connect command establishes an association with a remote control-

ler. Once the association is established, it is handed off to the nvmf(4) driver which creates a
new nvmeX device. The connect command requires both the network address and subsystem
NQN of the remote controller. Example 2 connects to the I/O controller listed in Example 1.
Example 2: Connecting to an I/O Controller

kldload nvmf nvmf_tcp # kldload nvmf nvmf_tcp
nvmecontrol connect ubuntu:4420 nvme-test-target# nvmecontrol connect ubuntu:4420 nvme-test-target

Once the association is established, the kernel outputs the text from Figure 1 to the sys-
tem console and system message buffer. The nvmeX device includes the remote subsystem
NQN in the device description, and each remote namespace is enumerated as an ndaX pe-
ripheral.
Figure 1: Console Messages from Connecting

nvme0: <Fabrics: nvme-test-target>
nda0: at nvme0 bus 0 scbus0 target 0 lun 1
nda0: <Linux 5.15.0-8 843bf4f791f9cdb03d8b>
nda0: Serial Number 843bf4f791f9cdb03d8b
nda0: nvme version 1.3
nda0: 1024MB (2097152 512 byte sectors)

3 of 6

11FreeBSD Journal • July/August 2024

The nvme0 device from Figure 1 can be used with other nvmecontrol(8) commands such
as identify similar to PCI-express controllers. Example 3 shows a subset of the identify
controller data displayed by nvmecontrol(8). The nda0 disk device can be used like any other
NVMe disk device.
Example 3: Identify a Remote I/O Controller

nvmecontrol identify nvme0 # nvmecontrol identify nvme0
Controller Capabilities/Features
================================
...
Model Number: Linux
Firmware Version: 5.15.0-8
...

Fabrics Attributes
==================
I/O Command Capsule Size: 16448 bytes
I/O Response Capsule Size: 16 bytes
In Capsule Data Offset: 0 bytes
Controller Model: Dynamic
Max SGL Descriptors: 1
Disconnect of I/O Queues: Not Supported

Connecting via Discovery
The nvmecontrol(8) connect-all command fetches the discovery log page from the

indicated discovery controller and creates an association for each log page entry. The
association from Example 2 could be created by executing nvmecontrol connect-all
ubuntu:4420 instead of fetching the discovery log page and using the connect command.

Disconnecting
The nvmecontrol(8) disconnect command detaches the namespaces from a remote

controller and destroys the association. Example 4 disconnects the association created by
Example 2. The disconnect-all command destroys associations with all remote controllers.
Example 4: Disconnecting From a Remote I/O Controller

nvmecontrol disconnect nvme0# nvmecontrol disconnect nvme0

Reconnecting
If a connection is interrupted (for example, one or more TCP connections die), the ac-

tive association is torn down (all queues are disconnected), but the nvmeX device is left in a
quiesced state. Any pending I/O requests for remote namespaces are left pending as well.
In this state, the reconnect command can be used to establish a new association to resume
operation with a remote controller. Example 5 reconnects to the controller from Example 2.
Note that the reconnect command requires an explicit network address similar to the con-
nect command.

4 of 6

12FreeBSD Journal • July/August 2024

Example 5: Reconnecting to a Remote I/O Controller

nvmecontrol reconnect nvme0 ubuntu:4420# nvmecontrol reconnect nvme0 ubuntu:4420

Controller
The Fabrics controller on FreeBSD exposes local block devices as NVMe namespaces to

remote hosts. The controller support on FreeBSD includes a userland implementation of a
discovery controller as well as an in-kernel I/O controller. Similar to the existing iSCSI target
in FreeBSD, the in-kernel I/O controller uses CAM’s target layer (ctl(4)).

Block devices are created by adding ctl(4) LUNs via ctladm(8). The discovery service and
initial handling of I/O controller connections are managed by the nvmfd(8) daemon. The
in-kernel I/O controller is provided by the nvmft(4) module. Example 6 adds a ZFS volume
named pool/lunØ as a ctl(4) LUN and starts the nvmfd(8) daemon. Remote hosts can then
access the ZFS volume as a NVMe namespace.
Example 6: Exporting a local ZFS Volume

kldload nvmft nvmf_tcp # kldload nvmft nvmf_tcp
ctladm create -b block -o file=/dev/zvol/pool/lun0 # ctladm create -b block -o file=/dev/zvol/pool/lun0
LUN created successfully
backend: block
device type: 0
LUN size: 4294967296 bytes
blocksize 512 bytes
LUN ID: 0
Serial Number: MYSERIAL0000
Device ID: MYDEVID0000
nvmfd -F -p 4420 -n nqn.2001-03.com.chelsio:frodo0 -K

Each time a remote host connects to the I/O controller, a message is logged by the ker-
nel listing the remote host’s NQN (see Figure 2).
Figure 2: Log Messages from New Association

nvmft0: associated with
nqn.2014-08.org.nvmexpress:uuid:00000000-0000-0000-0000-ffffffffffff

LUNs can be added or removed by ctladm(8) while nvmfd(8) is running. If any remote
hosts are connected while a LUN is added or removed, an asynchronous event is reported
to the remote hosts. This allows remote hosts to notice that namespaces have been added
or removed while connected.

Two new commands have been added to ctladm(8) to manage Fabrics associations. The
nvlist command lists all active associations from remote hosts. Example 7 shows the output
from the nvlist command while a single host is connected to the controller from Example 6.
Example 7: Listing Active Associations

ctladm nvlist # ctladm nvlist
 ID Transport HostNQN SubNQN
 0 TCP
nqn.2014-08.org.nvmexpress:uuid:00000000-0000-0000-0000-ffffffffffff
nqn.2001-03.com.chelsio:frodo0

5 of 6

https://man.freebsd.org/ctl/4
https://man.freebsd.org/ctladm/8
https://man.freebsd.org/nvmfd/8
https://man.freebsd.org/nvmft/4

13FreeBSD Journal • July/August 2024

The nvterminate command closes one or more associations. Associations for a single
connection or NQN can be terminated, or all active associations can be terminated. Exam-
ple 8 terminates the association from Example 7. After the association is terminated, the ker-
nel logs the messages from Figure 3.
Example 8: Terminating an Association

ctladm nvterminate -c 0 # ctladm nvterminate -c 0
NVMeoF connections terminated

Figure 3: Log Message after Terminating

nvmft0: disconnecting due to administrative request
nvmft0: association terminated

Conclusion
NVMe over Fabrics support will be available in FreeBSD 15.0 including both host and con-

troller support. The development of Fabrics support was sponsored by Chelsio Communi-
cations, Inc.

JOHN BALDWIN is a systems software developer. He has directly committed changes to
the FreeBSD operating system for over twenty years across various parts of the kernel (in-
cluding x86 platform support, SMP, various device drivers, and the virtual memory subsys-
tem) and userspace programs. In addition to writing code, John has served on the FreeBSD
core and release engineering teams. He has also contributed to the GDB debugger. John
lives in Concord, California with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

6 of 6

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
https://www.freebsdfoundation.org

14FreeBSD Journal • July/August 2024

1 of 6

We all hear about Network Attached Storage (NAS) being able to provide additional
storage for devices on your network. However, the protocols for this storage may
not be appropriate for all use cases.

Welcome to the world of Storage Area Network (SAN). Typically, these are found more
in enterprises than the home or small business, but that does not mean that they shouldn’t
be used in such a situation. In fact, you probably have a very good use case if you do lots of
virtualization with central storage connected to multiple compute devices or have a need
to provide block storage to Windows Workstations used for engineering or graphics design
that require more storage than can physically fit within desktop PCs.

Typically, the SAN providers that we hear of in the
enterprise space are provided by the likes of Dell EMC,
IBM, Hitachi and NetApp to name a few. However, we
are spoiled in the FreeBSD space to have a high-per-
formance, iSCSI SAN solution baked right into the
base system. Using this, in combination with the pow-
erful ZFS volume manager and file system, we have a
flexible, resilient, and fast storage solution that we can
make available to network clients. The iSCSI subsystem
was implemented and part of the 10.0-RELEASE with
numerous performance improvements coming out
with the 10.1-RELEASE.

Internet Small Computer Systems Interface or iSC-
SI for short is an IP-based protocol for carrying SCSI
commands over a TCP/IP ethernet network. It allows
the presentation of block device storage to machines distributed across the network. It is
flexible enough to even be routed over the internet if required, but the security implications
and precautions that need to be considered are out of scope for this text.

In an ideal world, iSCSI should exist within its own Layer 2 physical network where the only
communication from compute hosts via dedicated storage interfaces is to that of the storage
target. No other general network traffic should exist on this network segment to avoid con-
tention to the storage for this and other compute nodes. In a smaller environment, using a
segmented switch with VLANs is an acceptable alternative, however, understand that general
network traffic and storage traffic will be competing for interface bandwidth.

BY JASON TUBNOR

Typically, Storage Area
Networks are found more
in enterprises than the
home or small business,
but that does not mean
that they shouldn’t be used
in such a situation.

FreeBSD
iSCSI Primer

15FreeBSD Journal • July/August 2024

The high-level iSCSI terminology is quite simple. There is the initiator (client) and the tar-
get (host). The initiator is the active end of the connection whereas the target is passive — it
will never try to connect to an initiator.

In the following exercise, we are going to prepare a simple iSCSI configuration on a
FreeBSD host to use as a target and provide ZFS zvol block devices to a FreeBSD and MS
Windows initiator.

Our hosts on the network:

2001:db8:1::a/64 – FreeBSD ZFS Storage Host (Target)
2001:db8:1::1/64 – FreeBSD Client (Initiator)
2001:db8:1::2/64 – Windows Server 2022 (Initiator)

First, we will configure ZFS volumes to present as iSCSI targets for each of the initiators
on the storage host. This could also be simply files on a ZFS dataset or UFS partition, but
ZFS volumes give you far more control over aspects of the storage, especially ongoing man-
agement as data requirements change or in relation to snapshot and replication require-
ments.

zfs create -o volmode=dev -V 50G tank/fblock0
zfs create -o volmode=dev -V 50G tank/wblock0

Adjust the volblocksize attribute when creating the volumes to meet the requirements
of the workload that they will be used for. As of 14.1-RELEASE, they will be set to 16K which is
a reasonable balance for most workloads.

Create a file /etc/ctl.conf that is only read/writeable by root. This file will contain se-
crets, so it is essential that no other group or user has the ability to view or write to this file.
Below are the contents that we will add to provide storage points for our initiators:

auth-group ag0 {
 chap-mutual “inituser1” “secretpassw0rd” “targetuser1” “topspassw0rd”
 initiator-portal [2001:db8:1::1]
}

auth-group ag1 {
 chap-mutual “inituser2” “hiddenpassw0rd” “targetuser2” “freepassw0rd”
 initiator-portal [2001:db8:1::2]
}

portal-group pg0 {
 discovery-auth-group no-authentication
 listen [2001:db8:1::a]
}

target iqn.2012-06.org.example.iscsi:target1 {
 alias “Target for FreeBSD”
 auth-group ag0
 portal-group pg0
 lun 0 {
 path /dev/zvol/tank/fblock0

2 of 6

16FreeBSD Journal • July/August 2024

 #blocksize 4096
 option naa 0x4ee0ebaf06a1acee
 option pblocksize 4096
 option ublocksize 4096
 }
}

target iqn.2012-06.org.example.iscsi:target2 {
 alias “Target for Windows”
 auth-group ag1
 portal-group pg0
 lun 1 {
 path /dev/zvol/tank/wblock0
 blocksize 4096
 option naa 0x4ee0ebaf06a1acbb
 }
}

Let’s break down the file to get an understanding of the what and why of each component:

auth-group ag0 {
 chap-mutual “inituser1” “secretpassw0rd” “targetuser1” “topspassw0rd”
 initiator-portal [2001:db8:1::1]
}

This is the authorization group that can be used across multiple targets. This example
binds the auth-group to a unique initiator with the address 2001:db8:1::1 and requires it to
have mutual authentication. You can simply use CHAP authentication as a ‘one way’ au-
thentication, but it is recommended that, if supported, you use mutual authentication to
ensure that both the initiator and the target are correctly authenticating against each other.

This authentication may be sufficient where the initiator and target reside on the same
physical network, but it should not be relied upon as a security control. This type of authen-
tication should be seen as a method of ensuring that only the correct storage is allocated
to the initiator. Loosely configured iSCSI targets could make the wrong storage available to
a target which could have the undesired effect of overwriting data, partition table, or other
meta data, so restricting access to a specific target dataset is essential.

portal-group pg0 {
 discovery-auth-group no-authentication
 listen [2001:db8:1::a]
}

Portal groups set the target environment offered to the initiators. Here we define a
portal group to allow initiators to connect to the target via 2001:db8:1::a and so they can
discover the target datasets that include this portal group without having to authenticate
first. Typically, in a controlled environment, this would be fine to ensure initiators can find
what they need to connect to, but would be undesirable in a more hostile or untrusted
environment.

3 of 6

17FreeBSD Journal • July/August 2024

target iqn.2012-06.org.example.iscsi:target1 {
 alias “Target for FreeBSD”
 auth-group ag0
 portal-group pg0
 lun 0 {
 path /dev/zvol/tank/fblock0
 #blocksize 4096
 option naa 0x4ee0ebaf06a1acee
 option pblocksize 4096
 option ublocksize 4096
 }
}

The meat of the configuration is the target. This will include the auth-group and
portal-group to build up the previously described components for the presentation to
the initiator. These can be over-ridden on a per target basis and can be defined without the
applicable group definition.

The iSCSI Qualified Name (IQN) format takes the form iqn.yyyy-mm.namingauthority:
uniquename. This is needed for each target definition.

The alias definition is simply a human readable description for the target.
Each target can have multiple LUNs but here we simply have only one LUN per target.
The LUN context allows you to define the charac-

teristics of the LUN. This is important where ZFS is be-
ing used on the presented storage within the initiator.
While your ZFS volume on the target has a block size
of 16KB, the ZFS pool — when created on the initiator
— will complain that the block size of the storage is not
4KB or less. It won’t stop you from using it, but a mes-
sage when you execute zpool status on the initiator
will continually remind you of this. Adjusting the block
size attribute to 4096 is not sufficient to remediate the
issue. The pblocksize and ublocksize options will
need to specifically be added for a ZFS use case.

Option naa should be explicitly defined for LUNs.
This is either a 64- or 128-bit unique hexadecimal iden-
tifier. This is important when you are backing VMWare
compute onto an iSCSI target to ensure there is no confusions with LUN assignments.

This is now enough to get you up and running and present storage from your target. En-
able ctld and bring up the daemon:

service ctld enable
service ctld start

To verify that the storage is presented, you can check that the daemon is listening:

netstat -na | grep 3260
tcp6 0 0 2001:db8:1::a.3260 *.* LISTEN

4 of 6

Each target can have
multiple LUNs but here
we simply have only
one LUN per target.

18FreeBSD Journal • July/August 2024

Then verify the LUNs are presented using the CAM Target Layer control utility:

ctladm lunlist
(7:1:0/0):<FREEBSD CTLDISK 0001> Fixed Direct Access SPC-5 SCSI device
(7:1:1/1):<FREEBSD CTLDISK 0001> Fixed Direct Access SPC-5 SCSI device
ctladm devlist
LUN Backend Size (Blocks) BS Serial Number Device ID
 0 block 104857600 512 MYSERIAL0000 MYDEVID0000
 1 block 13107200 4096 MYSERIAL0001 MYDEVID0001

Now to configure your FreeBSD initiator. You need to create the /etc/iscsi.conf
configuration file. This also needs to be set as read/write explicitly for root as it contains
secrets:

fblock0 {
targetaddress = [2001:db8:1::a];
targetname = iqn.2012-06.org.example.iscsi:target1;
initiatorname = iqn.2012-06.org.example.freebsd:nobody;
authmethod = CHAP;
chapiname = “inituser1”;
chapsecret = “secretpassw0rd”;
tgtChapName = “targetuser1”;
tgtChapSecret = “topspassw0rd”;
}

Each of these attributes are:
• fblock0 — This is a human readable identifier; it is not related to anything except

grouping each of the following configuration items.
• targetaddress — The network address of the storage target. This can also be a fully

qualified domain name.
• targetname — This will align with the corresponding target name that was defined in

the ctl.conf file
• initiatorname — Defining the IQN of the initiator.
• authmethod — Can simply be defined on FreeBSD as CHAP. Mutal settings will be as-

sumed if ChapName and ChapSecret are prefixed with ‘tgt’.
• chapiname/chapsecret — Authentication as defined previously in the ctl.conf file.
• tgtChap[Name,Secret] — Authentication that the target needs to complete the au-

thentication handshake with the initiator.
To enable use, simply issue:

service iscsid enable
service iscsictl enable
service iscsid start
service iscsictl start

This should then attach the target’s storage presentation to the initiator:

iscsictl -L
Target name Target portal State
iqn.2012-06.org.example.iscsi:target1 [2001:db8:1::a] Connected: da0

5 of 6

19FreeBSD Journal • July/August 2024

While we are here, let’s look at the simple switches that will be used most frequently with
the iscsictl command:

• L This lists targets mounted to the initiator and where they are connected.
• Aa Attach all targets defined in the iscsi.conf file
• Ra Remove all targets that are connected to the initiator

gpart create -s GPT da0
da0 created
gpart add -t freebsd-zfs -a 1M da0
da0p1 added
zpool create tank da0p1
zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 49.5G 360K 49.5G - - 0% 0% 1.00x ONLINE -
zpool status tank
 pool: tank
 state: ONLINE
config:

 NAME STATE READ WRITE CKSUM
 tank ONLINE 0 0 0
 da0p1 ONLINE 0 0 0

errors: No known data errors

The manual pages for the configuration, daemons, and control tools are exceptionally
well written and can be referenced to get a better understanding of what else is available.

This only touches the surface of the full power that is available with the iSCSI implemen-
tation within FreeBSD, but it gives you an idea and practical examples of how it can be har-
nessed to provide flexible, remote storage options for your computing infrastructure.

JASON TUBNOR has over 28 years of IT industry experience in a vast range of disciplines
and is currently the ICT Senior Security Lead at Latrobe Community Health Service (Victo-
ria, Australia). Discovering Linux and Open Source in the mid 1990s, then being introduced
to OpenBSD in 2000, Jason has used these tools to solve various problems in organizations
that cover different industries. Jason is also a co-host on the BSDNow Podcast.

6 of 6

https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

20FreeBSD Journal • July/August 2024

1 of 3

ZFS has native support for encrypting datasets which allows you to easily pro-
tect data with industry-standard cipher suites. The major benefit to en-
crypting a dataset on a disk vs full-disk encryption of the disk is that a data-

set can be unmounted when not in use, while full-disk encryption requires the disk to be
powered down to get the data encrypted while it is at rest. Keep in mind that ZFS native en-
cryption has the concept of loading and unloading keys. Simply unmounting the encrypted
dataset is not enough. You must also unload the key associated with that particular dataset.
If the key is still loaded, the dataset can be mounted and the data will be available. Unload-
ing the key will make the mount operation fail. Loading the key is a prerequisite to mount-
ing the dataset. Nested child datasets inherit the encryption key of their parent — but they
don’t have to. Different encryption keys and cipher suites may be used even if the parent
dataset uses different encryption settings. Finally, changing keys is as easy as issuing the
zfs change-key command on the dataset.

Those are the basic concepts to get started.
Turning on the encryption parameter for a newly

created dataset and setting a key format is enough to
get started. If an encryption cipher suite isn’t specified,
the default of aes-256-gcm is used. The default is sub-
ject to change as new cipher suites get added in the
future. The encryption property of an existing dataset
is read-only, modifying the property of an unencrypted
dataset to turn on encryption isn’t allowed. To specify
the encryption properties, you need to know what op-
tions are available. I suggest reading up on the available options in the zfsprops man page.
Do this by typing the command man zfsprops. I also recommend reading the man page
zfs-load-key. For our first encrypted dataset, we will start with the default cipher suite, the
passphrase key format, and create a dataset called secrets. I’m using a FreeBSD jail ma-
chine I created in my lab for this article called alice. All the jails in my lab exist on the zpool
called lab. I’ve made a zpool available to the jail with the name zroot. From inside the jail I
must use the entire path lab/alice/zroot as the name of my zpool in order to create a
dataset within. For contrast, on my laptop I can simply use the name of my zpool and direct-
ly create a dataset there. Listed below are the commands to create an encrypted dataset on
both the alice jail as well as on my laptop. Like any ZFS dataset, setting a mount point is a

Loading the key is a
prerequisite to mounting
the dataset.

Protecting Data
with ZFS
Native Encryption
BY ROLLER ANGEL

21FreeBSD Journal • July/August 2024

good idea, just keep in mind ZFS is a layering filesystem so don’t use an existing path as the
new dataset mount point.
alice jail:

zfs create -o encryption=on -o keyformat=passphrase -o mountpoint=/secrets
lab/alice/zroot/secrets

my laptop:

zfs create -o encryption=on -o keyformat=passphrase -o mountpoint=/secrets zroot/secrets

After running the zfs create command, I’m prompted to enter in a sufficiently long
passphrase. Now, I have a mounted dataset with encryption enabled where I can store data
that I need to protect. While the dataset is mounted, I can use it like any other unencrypt-
ed dataset. When I’m done adding the secret data, I can unmount the secrets dataset and
unload the key together in one command by typing zfs unmount -u lab/alice/zroot/
secrets. To decrypt and mount the data again, I run the command zfs mount -l lab/
alice/zroot/secrets. This will ask me for my passphrase, load the key, then mount the
dataset. Omitting the -u flag in the unmount command will only unmount the dataset, leav-
ing the key loaded. The dataset can still be mounted without prompting for the passphrase
with zfs mount lab/alice/zroot/secrets. To un-
load the key after the dataset has been unmounted,
I run zfs unload-key lab/alice/zroot/secrets.
Now the previous mount command will fail because
the key isn’t loaded and I didn’t provide the -l flag to
ask ZFS to load the key before mounting. To load a key
and allow the dataset to be mounted, I run zfs load-
key lab/alice/zroot/secrets. I’m prompted for my
passphrase and the previous mount command will now
succeed because the key is loaded. To check whether
a key is loaded or not, view the properties of the dataset. Some useful properties to look at
are displayed when I run zfs list -o name,mountpoint,encryption,keylocation,
keyformat,keystatus,encryptionroot lab/alice/zroot/secrets. The KEYSTATUS
column shows available meaning the key is loaded. To see all of the dataset properties I
can use zfs get all lab/alice/zroot/secrets.

Next I create a dataset nested below the secrets dataset with a different cipher suite
and key format. This time, I’ll use a key file instead of a passphrase. To create a dataset that
uses a key file, I first need to generate the key and store it in a file. I do this by typing the
command dd if=/dev/urandom bs=32 count=1 of=/media/more-secrets.key. I used
the bs=32 because the key file is required to be 32 bytes long. Also, the output is going to
the /media path because I have mounted a portable USB drive there and have used dd to
generate the key file and store it directly onto the drive. This is so there is no trace of the key
file on my machine when I unload the key and I unmount and remove the USB drive. I rec-
ommend storing this key file on more than one USB drive as a safeguard in case a USB drive
is damaged. Now that the key file has been generated I can create the nested dataset with
the AES-256-CCM cipher suite by running zfs create -o encryption=aes-256-ccm -o
keyformat=raw -o keylocation=file:///media/more-secrets.key -o mountpoint=/
secrets/more-secrets lab/alice/zroot/secrets/more-secrets. Viewing the proper-

2 of 3

While the dataset
is mounted, I can use it
like any other unencrypted
dataset.

22FreeBSD Journal • July/August 2024

ties of this new dataset I can see the ENCROOT column is set to lab/alice/zroot/secrets/
more-secrets. I can use the same methods to unmount and unload the key as I used on
the secrets dataset. As I get more datasets and keys, I may want to consider unloading all
the keys with zfs unload-key -a or I can unload a subset of keys by unloading just the
keys for the secrets dataset and all descendant datasets with zfs unload-key -r lab/
alice/zroot/secrets. Conversely, If I want to load a subset of keys for the secrets dataset
and all descendant datasets, I run zfs load-key -r lab/alice/zroot/secrets.

If I decide later on that the data in this more-secrets dataset doesn’t need to have a sep-
arate key file, and instead, I want it to inherit the settings from its parent dataset secrets
(switching from custom generated key file to the passphrase configured earlier) all I need to
do is run zfs change-key -i lab/alice/zroot/secrets/more-secrets. View the prop-
erties again and notice that ENCROOT, KEYLOCATION, and KEYFORMAT have all changed. The
encryption suite, however, doesn’t change because the
encryption suite can only be set on the creation of a
dataset. Since more-secrets is contained within
secrets it will unmount as part unmouting the
secrets dataset. Although mounting the secrets
dataset will not also mount more-secrets. That will
need to be mounted separately, but the key will only
need to be loaded once since they both share the
same key. To switch back to using the key file, I run
zfs change-key -o keyformat=raw -o keylocation=file:///media/more-secrets.
key lab/alice/zroot/secrets/more-secrets. If I want to permanently destroy the data
in more-secrets, I simply unmount the dataset, unload the key, and destroy the key file and
any backup copies of the key file I have made. Now, the data is not able to be recovered.
I can then run zfs destroy lab/alice/zroot/secrets/more-secrets to remove the
dataset.

One final note I’d like to share is regarding backups of encrypted data. As you have seen,
ZFS native encryption allows data to be easily protected with encryption. Snapshots of en-
crypted datasets can be received on an untrusted backup server in their encrypted form.
Without the key, the remote backup server won’t be able to mount the dataset. Use the
--raw flag of the zfs send command to help accomplish this. For more details, I suggest
reading the man page zfs-send to get an idea of how it works and then get a copy of the
book ZFS Mastery: Advanced ZFS to really dive deep into the specifics and to learn a myriad
of techniques to further hone your ZFS skills.

I hope you enjoyed this how-to article and that you begin protecting your sensitive data
using the native encryption offered by the amazing ZFS filesystem.

ROLLER ANGEL spends most of his time helping people learn how to accomplish their
goals using technology. He’s an avid FreeBSD Systems Administrator and Pythonista who
enjoys learning amazing things that can be done with Open Source technology — especially
FreeBSD and Python — to solve issues. He’s a firm believer that people can learn anything
they wish to set their minds to. Roller is always seeking creative solutions to problems and
enjoys a good challenge. He’s driven and motivated to learn, explore new ideas, and to keep
his skills sharp. He enjoys participating in the research community and sharing his ideas.

3 of 3

ZFS native encryption
allows data to be easily
protected with encryption.

https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

https://www.freebsdfoundation.org/donate

24FreeBSD Journal • July/August 2024

In the last column, I talked a little about the board I’ve been using, the Digilent ARTYZ7. In
this one, I’m going to talk about rolling your own images. At some point you’re going to
want an image slightly different from the one you have, and so you’ll want to build from

source and create an image to write to an SD card.
Let’s start by understanding exactly how the ARTYZ7 boots. The Zynq-7000 SoC Tech-

nical Reference Manual is a gold mine of technical information, and in Chapter 6, it talks
about how the chip and thus all Zynq boards boot. There are a ton of technical details, but
based on the way the jumpers are configured by default, the ARTYZ7 boots from the SD
card. You may have downloaded and poked around the image I provided in the previous col-
umn. If you did, you’ll see that it’s formatted in
MBR mode with a FAT partition first and a sec-
ond MBR partition with a FreeBSD slice that has
UFS on it. The processor will look for an MBR and
look for the FAT16 or FAT32 partition. It will look
for a file boot.bin on the FAT partition. If it finds
one, it will load that into memory and begin exe-
cuting that. If you wanted to program to the bare
metal, you could write your application and call
it boot.bin. That’s a little much for me. Instead,
when booting FreeBSD a first stage boot load-
er is used, and like many embedded boards we
use Das U-boot. U-boot for short is an open-source community-maintained boot loader. In
our case U-boot is used twice. First, U-boot is compiled as a minimal First Stage Boot Load-
er (FSBL) which sets up the hardware and then looks for a second stage boot loader which
is also U-boot but compiled with a much richer functionality. In our usage, the second stage
U-boot lives in the file named U-boot.img on the FAT partition. This U-boot second stage
loader loads the lua loader from the file EFI/BOOT/bootarm.efi on the FAT partition. The
lua loader will then load the kernel, among other things, into memory and execute it.

So, if we’re going to build an image, we’re going to need to create the partitions and get
U-boot installed as well as FreeBSD on an SD card.

BY CHRISTOPHER R. BOWMAN

1 of 4

Rolling
Your Own Images

At some point you’re
going to want an image
slightly different from
the one you have.

https://digilent.com/shop/zedboard-zynq-7000-arm-fpga-soc-development-board/
https://digilent.com/shop/zedboard-zynq-7000-arm-fpga-soc-development-board/
https://docs.xilinx.com/v/u/en-US/ug585-Zynq-7000-TRM
https://docs.xilinx.com/v/u/en-US/ug585-Zynq-7000-TRM
https://en.wikipedia.org/wiki/Das_U-Boot

25FreeBSD Journal • July/August 2024

Building U-boot is relatively straightforward. While there are many ports for U-boot
for various boards, there isn’t one for the ARTYZ7. I’ve created one which you can find
HERE. While I haven’t managed to get this into the FreeBSD ports tree, you can simply
drop this into the /usr/ports/sysutils directory in a recent ports tree. Chapter 4.5
of the FreeBSD handbook has really excellent instructions for installing ports via git and
building a port. Once you’ve added the port to your ports tree a simple make in sysin-
stall/u-boot-artyz7 should cause U-boot to be downloaded and built automatically.
After make install the files boot.bin and U-boot.img should appear in /usr/local/
share/U-boot/U-boot-artyz7. Note: I used to be able to use high “-j” values with make
to use multiple cores to build but that seem to fail on the most recent ports tree (2024Q3)

Building from source is also well documented in the FreeBSD handbook. In Chapter 26.6.
Updating FreeBSD from Source you’ll find a lot of information on downloading the FreeBSD
sources and building from them. If you have the FreeBSD sources install in /usr/src you
can simply go there and run:

make buildworld
make buildkernel KERNCONF=ARTYZ7

While this should work just fine on the ARTYZ7 boards, after all it has a full FreeBSD in-
stall, you should be prepared for it to take a long, um long time. As PC hardware has be-
come so incredibly powerful and inexpensive, I use an AMD64 system to host all my files,
development environment, and do all my building. FreeBSD has built-in support for cross
compiling and building. On my PC I use the following to get my PC to build from sources
for my ARM based ARTYZ7 board:

make buildworld TARGET=arm TARGET_ARCH=armv7 -j32
make buildkernel KERNCONF=ARTYZ7 TARGET=arm \
 TARGET_ARCH=armv7 -j32

This will build a cross compiler from AMD64 to ARMv7 and use that compiler to build ev-
erything.

For a kernel config file, I’ve copied the ZEDBOARD config in src/sys/arm/conf/
ZEDBOARD to src/sys/arm/conf/ARTYZ7 and I’ve changed the name in there to match.
The -j32 switch causes the compile processes to use up to 32 processes while doing the
builds. On an AMD 5950x PC with a fast SSD it takes about 10 minutes to build world and
another 60 seconds or so to build the kernel. I couldn’t imagine how many days it would
take on the ARTYZ7.

Once you build everything from source the process can diverge in a couple of ways:
1. You can mount an SD card on your host development system and install directly onto

the SD card from the host.
2. You can use the mdconfig command to create a file-backed memory device. This al-

lows you to treat a file as if it were a block device. You can use all the standard FreeBSD
tools to partition the device and mount the partitions in the filesystem. From there you
can install as if it were a physical device and, at the end, you’re left with a file that is suit-
able for use with dd to copy to an SD card or provide to others

3. The final method, and the one I’m using and will discuss here, is to install to a directory
on my host PC and then use mkimg and makefs to build an image from the host di-
rectory which is again suitable for copying to an SD card using dd.

2 of 4

http://www.chrisbowman.com/crb/ArtyZ7/u-boot_ports/patches.html
https://docs.freebsd.org/en/books/handbook/ports/#ports-using
https://docs.freebsd.org/en/books/handbook/ports/#ports-using
https://docs.freebsd.org/en/books/handbook/cutting-edge/#makeworld
https://docs.freebsd.org/en/books/handbook/cutting-edge/#makeworld
https://man.freebsd.org/cgi/man.cgi?query=mdconfig&apropos=0&sektion=0&manpath=FreeBSD+13.2-RELEASE+and+Ports&arch=default&format=html
https://man.freebsd.org/cgi/man.cgi?query=dd&apropos=0&sektion=0&manpath=FreeBSD+13.2-RELEASE+and+Ports&arch=default&format=html
https://man.freebsd.org/cgi/man.cgi?query=mkimg&apropos=0&sektion=0&manpath=FreeBSD+13.2-RELEASE+and+Ports&arch=default&format=html
https://man.freebsd.org/cgi/man.cgi?query=makefs&apropos=0&sektion=0&manpath=FreeBSD+13.2-RELEASE+and+Ports&arch=default&format=html
https://man.freebsd.org/cgi/man.cgi?query=dd&apropos=0&sektion=0&manpath=FreeBSD+13.2-RELEASE+and+Ports&arch=default&format=html

26FreeBSD Journal • July/August 2024

Let’s look a little more closely at method 3. I typically create an msdos directory and a ufs
directory to represent the two partitions I’m going to need on my SD card:

 # mkdir msdos ufs

Next, I do an install to the ufs directory:

make installworld installkernel TARGET=arm \
 TARGET_ARCH=armv7 -j32 DESTDIR=ufs

You’ll also need to run the distribution target which creates all the default configuration
files in /etc. When doing a source upgrade of a working box, you wouldn’t normally run
this, as it would overwrite your configuration files, but when building a system from scratch,
you do want default configuration files:

make distribution TARGET=arm \
 TARGET_ARCH=armv7 DESTDIR=ufs -j32

At this point, I have a complete install in ufs and I can go in and do any customization I
want to my image. For instance, I can customize ufs/etc/rc.conf to automatically bring
up the ethernet interface, cgem0 using DHCP. I can install ssh keys into ufs/etc/ssh so
that the system has the same ssh keys all the time instead of having new ones generated
on first boot. Since I’m using a host system to do all my building and host all my files, I like
to configure /etc/fstab to nfs mount my home directory.

I’ve found it very handy to create a user account so I can log in immediately:

echo 'xxxx' | pw -R ${ufs} useradd -n crb -m -u 1001 \
 -d /homes/crb -g crb -G 1001,wheel,operator\
 -c “Christopher R. Bowman” -s /bin/tcsh -H 0

The -R option to pw causes pw to edit the password files in the ufs/etc instead of my
host system. The -H0 option allows me to use echo to pipe my password to pw without hav-
ing to type it in interactively (you’ll need to use the encoded password entry from your host
system here instead of xxxx). You may also find it handy to modify the root account so that
it has a password instead of no password.

Now that I’ve got the ufs directory customized as I want it to appear in my image, let’s
turn our attention to the FAT partition.

I need to install boot.bin and U-boot.img:

cp /usr/local/share/U-boot/U-boot-artyz7/boot.bin msdos
cp /usr/local/share/U-boot/U-boot-artyz7/U-boot.img msdos

boot.bin loads U-boot.img which emulates EFI firmware for the FreeBSD loader. EFI
systems look for a file on a FAT partition called EFI/BOOT/bootarm.efi so we’ll copy the
FreeBSD lua loader there:

mkdir -p msdos/ EFI/BOOT
cp ufs/boot/loader_lua.efi msdos/EFI/BOOT/bootarm.efi

Note I copied the ARM version from our build not the host version which would be
AMD64 code.

Now, we’ve got our two directories msdos and ufs which contain the files we want on
the SD card we just need to create the image file. This is a 4-step process:

3 of 4

https://man.freebsd.org/cgi/man.cgi?query=pw&apropos=0&sektion=0&manpath=FreeBSD+13.2-RELEASE+and+Ports&arch=default&format=html
https://man.freebsd.org/cgi/man.cgi?query=pw&apropos=0&sektion=0&manpath=FreeBSD+13.2-RELEASE+and+Ports&arch=default&format=html
https://man.freebsd.org/cgi/man.cgi?query=pw&apropos=0&sektion=0&manpath=FreeBSD+13.2-RELEASE+and+Ports&arch=default&format=html

27FreeBSD Journal • July/August 2024

makefs -t msdos \
 -o fat_type=16 \
 -o sectors_per_cluster=1 \
 -o volume_label=EFISYS \
 -s 32m \
 efi.part msdos

makefs -B little \
 -o label=rootfs \
 -o version=2 \
 -o softupdates=1 \
 -s 3g \
 rootfs.ufs ufs

mkimg -s bsd \
 -p freebsd-ufs:=rootfs.ufs \
 -p freebsd-swap::1G \
 -o freebsd.part

mkimg -s mbr -f raw -a 1\
 -p fat16b:=efi.part \
 -p freebsd:=freebsd.part \
 -o selfbuilt.img

The first command builds a file system image file (efi.part) from the msdos directory.
The second command builds a file system image file (rootfs.ufs) from the ufs directory.
The third command takes the rootfs.ufs file and assembles it into a FreeBSD slice with a
1 gigabyte swap partition. The final command bundles our efi.part and freebsd.part
files into a single image (selfbuilt.img).

If I insert my SD card into my host I get a /dev/da0 device and a simple dd will copy the
image onto the SD card:

dd if=selfbuilt.img of=/dev/da0 bs=1m status=progress

At this point all that’s left to do is insert the SD card into the ARTYZ7 board, hit the reset
button and watch the glorious boot process. Because of the configuration I did in the ufs
partition, I’m able to ssh into my board as soon as it’s done booting and my home directory
is nfs mounted. At this point it’s time for world domination! Or a beer — it’s always time for
beer.

CHRISTOPHER R. BOWMAN first used BSD back in 1989 on a VAX 11/785 while working
2 floors below ground level at the Johns Hopkins University Applied Physics Laborato-
ry. He later used FreeBSD in the mid 90’s to design his first 2 Micron CMOS chip at the
University of Maryland. He’s been a FreeBSD user ever since and is interested in hard-
ware design and the software that drives it. He has worked in the semiconductor design
automation industry for the last 20 years.

4 of 4

https://man.freebsd.org/cgi/man.cgi?query=dd&apropos=0&sektion=0&manpath=FreeBSD+13.2-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

28FreeBSD Journal • July/August 2024

1 of 5

TCP Large Receive Offload (TCP LRO) is a protocol-specific method to minimize the CPU
resources used for receiving TCP segments. It is also implementation specific, and this arti-
cle describes its implementation in the FreeBSD kernel. At any given time, TCP is often used
for unidirectional communication, although TCP provides a bidirectional channel. This is the
case, for example, if the application protocol using TCP as its transport protocol is of the re-
quest/response type like HTTP.

TCP LRO can reduce the CPU resources required in a
number of ways including:

• Combining acknowledgments so that a single large
stretch acknowledgment is delivered to the TCP stack
instead of multiple smaller acknowledgments. This ap-
plies to the case where the TCP endpoint is mostly
sending user data.

• Combining multiple inbound data segments into one,
big, larger piece of data. This helps if the TCP endpoint
is mostly receiving user data.

• Bypassing parts of IP stack processing. Therefore, it is
useful for TCP LRO to intercept the packets at the net-
work interface layer.

All of these methods are focused on cutting down the
number of times the TCP stack gets called and/or minimizing the number of cache misses
that the CPU will have to take by compressing all of the processing into one, or a series of
packets, processed together. For most all FreeBSD drivers, a single software TCP LRO pro-
cess is used, though some specific hardware and its drivers do support hardware TCP LRO.
This article will discuss only the software TCP LRO in FreeBSD.

Evolution of TCP LRO
The initial implementation of TCP LRO was implemented by Andrew Gallatin in 2006

and was specific to the mxge(4) driver. It was then made generic to all drivers by Jack Vogel
in 2008. It had only two focuses:

BY RANDALL STEWART AND MICHAEL TÜXEN

Introduction to TCP
Large Receive Offload

At any given time, TCP is
often used for unidirectional
communication.

29FreeBSD Journal • July/August 2024

1. Collecting and merging together small inbound data segments to present a larger, sin-
gle, inbound data segment to TCP, or,

2. Collecting a number of acknowledgments and presenting one, single, larger acknowl-
edgment to the TCP stack.

Both methods were implemented to cut down on the number of times the TCP receive
path was called to save CPU resources. Its implementation was very careful to only handle
consecutive segments and ones without TCP options (the only allowed TCP option was the
timestamp option). The initial implementation remained pretty much untouched in FreeBSD
for almost a decade, except for the addition of IPv6 support by Bjoern A. Zeeb in 2012.

The Addition of Sorting
By 2016 the TCP LRO code was starting to show its age, with the ever faster NICs being

deployed on both clients and servers, more and more pack-
ets were arriving on each driver interrupt. The initial imple-
mentation only allowed for eight different connections to
have data collected and compressed. This worked fine in
workloads with only a few connections, but was less effec-
tive for workloads with a large number of connections, since
a driver was sending in far more packets from different
connections on each interrupt. With so many more pack-
ets from multiple connections arriving in an interrupt, the
chances of a single connection seeing packets with small
enough interleaving to fit in the eight connection limit grew
less and less to the point where TCP LRO was rarely effec-
tive, especially for the server case.

This is when Hans Petter Selasky had a brilliant idea, he
added an optional path for a driver to call that would sort
the inbound packets before submitting them to TCP LRO.
This meant that all packets arriving from each connection
could be processed together. Which then meant that you maximized TCP LRO’s effective-
ness on each interrupt. This change vastly improved TCP LRO performance while still allow-
ing older drivers to remain unchanged.

Packet Queuing
As TCP LRO became more effective, other problems with this more efficient path began

to show up including:
a. TCP’s congestion control prefers to see every acknowledgment, since an acknowledg-

ment advances its congestion window. Compressing acknowledgments can hamper
the congestion control algorithm.

b. Modern TCP stacks often would like to have precise Round Trip Time (RTT) informa-
tion, compressing multiple acknowledgments can hide this information from TCP.

c. Implementations of TCP ECN needed to see the IP header bits so that ECN signaling
from the network can be monitored and reacted to, compressing data or acknowledg-
ments effectively hides this information.

d. If a TCP stack is pacing packets (We will discuss pacing packets in a future column.),
then processing a series of acknowledgments when the stack is prohibited from send-
ing out packets increases overhead. This is because the acknowledgment can’t send

2 of 5

By 2016 the TCP LRO
code was starting
to show its age.

30FreeBSD Journal • July/August 2024

and yet results in a number of cache misses on the TCP stack during its processing,
which will then have to be repeated when the stack is allowed to output.

This set of problems brought about another optimization where the TCP stack enables
the TCP LRO code to directly queue packets to it for processing when it next awakens. This
then allows all the data in the IP and TCP headers to be processed at a single time when
the stack can send out data and reveals all the information (including the timing due to re-
ceive timestamps being added either in hardware by the NIC, or in software in the TCP LRO
code) that TCP wants to see.

Compressed Acknowledgments
This new queuing mechanism worked well but also caused an additional set of cache

misses when a series of acknowledgments arrived. This is because each packet in queue to
the stack results in a cache miss when it is processed. In the old compressed scheme, infor-
mation was lost but superior optimization was performed, since only one cache miss would
occur for some number of arriving acknowledgments.

This brought about another TCP LRO optimization. When consecutive acknowledg-
ments arrive, the TCP LRO code can now compress them
into a special packet that holds an array of the arriving pack-
et information. This compression technique allows all the
previously lost data (including arrival times) to be present-
ed to the TCP stack in the array structure so that only one
cache miss is taken to access the special packet. Note that
a TCP stack must signal the TCP LRO code that it supports
this special type of processing.

Inner and Outer Headers
The last set of optimizations to TCP LRO have to do with

the way inbound IP packets are examined. Originally, only
Ethernet frames containing a TCP segment using IPv4 or
IPv6 were supported. To support other encapsulations of
TCP segments, for example VXLAN which makes it possible to encapsulate an Ethernet
frame into a UDP packet, the packet parsing was generalized to support an inner and out-
er header. This way, packets with UDP as an outer header and TCP as an inner header can
be processed by TCP LRO. This assumes that the NIC can do the checksum offloading for
both protocols.

Management of TCP LRO
If a NIC driver supports TCP LRO, it can be enabled or disabled using the lro or -lro pa-

rameter of ifconfig.
A NIC driver must contain a struct lro_ctrl, which contains in addition to other fields

a pointer to:
• An array of pairs consisting of a pointer to struct mbuf and a sequence number. The

number of these pairs is lro_mbuf_max.
• A number of struct lro_entry. The number of these entries is lro_cnt.
The struct lro_entry is used to store the information about one aggregated set of re-

ceived TCP segments. If such an entry is not used, it is contained in the lro_free list. When
it is used, it is contained in the lro_active list and also accessible via the hashtable lro_hash.

3 of 5

Each packet in queue to
the stack results in a cache
miss when it is processed.

31FreeBSD Journal • July/August 2024

These two lists and the hash table are also contained in struct lro_ctrl.
There are two ways for a NIC driver to initialize the TCP LRO specific data. The classical

way is to call the tcp_lro_init() function. The number lro_cnt of struct lro_entry
which should be allocated, is specified by the loader tunable net.inet.tcp.lro.entries.
When using the classical way of initialization, the array of pairs has no entries. The mod-
ern way is to use the function tcp_lro_init_args() which allows the caller to specify the
lro_cnt and lro_mbuf_max. This means that the array of pairs might also be allocated.

No matter which way was used for initializing the struct lro_ctrl, calling the function
tcp_lro_free() frees all allocated resources.

Passing TCP Segments to TCP LRO
The NIC driver has a classical and a modern way of try-

ing to pass a TCP segment to TCP LRO. If passing the TCP
segment over to TCP LRO fails, the NIC driver must contin-
ue the normal processing of the TCP segment. One reason
for TCP LRO to fail is if the NIC was not able to verify the
checksums on the received IP packet.

To use the classical way to pass the TCP segment to TCP
LRO, the NIC driver calls tcp_lro_rx(). Basically this starts
the processing done by tcp_lro_rx_common(), which is
described in the next subsection. The modern way to pass
TCP segments to TCP LRO, which also requires the modern way of initialization, is to call
tcp_lro_queue_mbuf(). This function just computes a sequence number for the TCP seg-
ment and stores it in combination with the TCP segment in the next free entry of the array
of pairs. If the array becomes full by this operation, tcp_lro_flush_all() is called which is
also described in the next subsection.

No matter whether the classic or modern way of passing TCP segments to TCP LRO is
used, the time when the TCP segment is passed to TCP LRO is saved if there is no hard-
ware receive time from the NIC available.

Processing TCP Segments in TCP LRO
When the modern way of passing TCP segments to TCP LRO is used, one additional ini-

tial step is done. tcp_lro_flush_all() sorts all entries in the array of pairs based on the
sequence number field. This results in all TCP segments for the same TCP connection be-
ing most likely located next to each other in the array and in the sequence they were re-
ceived. Then tcp_lro_rx_common() is called for all the entries in the array. From now on,
the processing of the TCP segments is the same, no matter whether the classic or modern
way of passing them to TCP LRO is used.

tcp_lro_rx_common() parses the TCP segment and uses that information to lookup
the corresponding entry of type struct lro_entry in the hashtable. If such an entry is
found, the TCP segment will be added to the packet chain of TCP segments. If no entry is
found, a new one is created and the TCP segment is added to the entry. Note that when
the TCP LRO code runs out of free entries then an older entry is flushed which then frees
up that structure to be reused for the new allocation.

The NIC driver or the TCP LRO code itself can trigger a flush operation, which will result
in processing the information in the entries of type struct lro_entry such that it is suit-
able to be processed by the TCP stack as described in the next subsection.

4 of 5

There are two ways for
a NIC driver to initialize
the TCP LRO specific data.

32FreeBSD Journal • July/August 2024

Passing Information from TCP LRO to the TCP Stack
If alternate TCP stacks like the TCP RACK or the TCP BBR stack are used, the High Pre-

cision Timer System (HPTS) is employed. If only the FreeBSD base TCP stack is used, this is
not the case.

If the HPTS is not loaded in the FreeBSD kernel, the following will happen in case a flush
operation is triggered: TCP LRO will combine the packet chain for an entry of type struct
lro_entry into a single large TCP segment by concatenating all the user data of the in-
dividual TCP segments. Of course, this only works if there are no gaps or overlaps. If that
happens, TCP LRO might only combine smaller parts. The information about the acknowl-
edged data will also be combined and this large, generated TCP segment will be injected
into the interface layer. This results in less packets needing to be processed, but results also
in the loss of the information when the individual TCP segments were received, as well as
any IP-level ECN bits. Depending on the congestion control or loss recovery, this can have
a negative impact.

If the HPTS system is loaded, a flush operation results in a lookup of the TCP endpoint.
This information is used to determine if the TCP stack used by the TCP endpoint supports
mbuf-queueing. If it does not, the same processing as for the FreeBSD base stack is per-
formed. If the TCP stack supports mbuf-queueing, but not compressed ACKs, the packet
chain of the entry is copied over to the TCP endpoint and the TCP endpoint might be trig-
gered to process that packet chain. This is what is done when the TCP BBR stack is used
which supports mbuf-queueing but not compressed ACKs. If the TCP RACK stack is used,
which also supports compressed ACKs, multiple ACKs, which have been received in se-
quence, can be stored in a special data structure, which allows passing them in a more
memory-efficient way. Please note that when mbuf-queueing and compressed ACKs are
used, the information from when the individual packets were received is preserved and
passed to the TCP endpoint.

Future Evolution
Accurate ECN for TCP is a TCP feature currently being specified by the Internet Engi-

neering Task Force (IETF) and support for it is under development for FreeBSD. In addition
to using two new TCP options, it changes the use of two existing TCP flags and makes use
of one additional flag. This requires changes to the TCP LRO code to still allow the aggrega-
tion of incoming TCP segments for TCP connections supporting Accurate ECN.

The VXLAN support can also be improved to make use of mbuf-queueing.

RANDALL STEWART (rrs@freebsd.org) has been an operating system developer for over
40 years and a FreeBSD developer since 2006. He specializes in Transports including TCP
and SCTP but has also been known to poke into other areas of the operating system. He is
currently an independent consultant.

MICHAEL TÜXEN (tuexen@freebsd.org) is a professor at the Münster University of Applied
Sciences, a part-time contractor for Netflix, and a FreeBSD source committer since 2009.
His focus is on transport protocols like SCTP and TCP, their standardization at the IETF and
their implementation in FreeBSD.

5 of 5

mailto:rrs@freebsd.org
mailto:tuexen@freebsd.org
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

33FreeBSD Journal • July/August 2024

“Iwish I’d saved the bandwidth for doing backups for something useful, as I won’t ever
need them” — said no one ever. In case of disasters — of which there are plenty,
backups are an important part of IT resilience. There are failed drives, stolen laptops,

broken firmware drivers that render data unreadable, and much more. Having backups and
doing them on a regular basis is vital for continu-
ing business operations. And testing them is just
as important. But what happens if the backup
solution is no longer supported and will not work
on newer systems? How are new systems backed
up and how do they integrate with the existing
solution?

I wrote an article about setting up a FreeBSD
Apple Time Machine in the March/April 2022 is-
sue of this Journal. I ran that setup for a long time
without issues--neither on the backup side nor
that I had to restore from it. As time moved on,
Apple changed the underlying Apple Filing Proto-
col (AFP) underneath. In newer versions of macOS (to which I diligently upgrade for securi-
ty and feature enhancements), the protocol underwent some changes that made my orig-
inal instructions not work anymore. As described above, its current setup still works, but for
new time machine systems that I backup to, it won’t work anymore. Apple integrated Server
Message Block (SMB, better known as Samba) into the protocol in macOS 10.9 (Mavericks).
The migration completed with macOS 11 (Big Sur), which removed the AFP server part and
made SMB the new standard, which Time Machine uses internally.

I noticed this when I set up a new time machine backup system. Many moons ago, I
had poured my instructions from the 2022 article into an Ansible playbook for easier de-
ployment. The playbook still works, but results in newer macOS versions not being able to
mount the exported drive as a storage location for Time Machine. Lucky me, I found that
other people had had the same issue and had solved it. The instructions were not as cohe-
sive has I’d hoped, though. The following setup combines different sources — reddit, per-

BY BENEDICT REUSCHLING

1 of 5

Samba-based
Time Machine Backups

PRACTICAL

Having backups and
doing them on a regular
basis is vital for continuing
business operations.

34FreeBSD Journal • July/August 2024

sonal blogs, the FreeBSD forums, and the Samba documentation. I have tested it on two
different machines, fleshing out some instructions, and adding missing commands to en-
sure it works as intended. I kept the original “based on ZFS”, because that’s what I trust my
important data to. You can leave this part out and run it on a different filesystem if you
want. However, don’t blame me if that does not work out so well!

Requirements
For this setup, you need a machine (FreeBSD in my case) for storing the backups. It

should have a decent network connection and fast storage. The storage also needs to be
redundant in some way, think RAID1 and levels above it. Capacity-wise, it depends on two
factors: how many people will backup their data to it and how much data they have. The
Time Machine configuration dialog allows you to set a disk quota and encryption, both of
which are good options. ZFS employs quotas and reservations, so I set those on the filesys-
tem level to the same value. Time Machine automatically removes older backups when the
available storage space won’t fit new backup data. The more storage you have, the longer
the backup history that you can potentially restore from.

The encryption part is also nice to have, especially since we’re sending the data over net-
works that may not be encrypted or are part of a VPN. On the receiving system, an en-
crypted ZFS dataset could be added for the data at rest. However, keep in mind that when
the backup target needs to restart, the encrypted dataset is not mounted unless someone
enters the passphrase for mounting the dataset. You could configure ZFS to get the pass-
phrase from a file somewhere, but I leave that as an exercise to you in securing access to
such a file that holds a passphrase in clear text.

On the sending side, any macOS system will be able to mount and configure the drive,
protected by individual user credentials. This allows multiple people to backup up to the
same Time Machine. Having beefy bandwidth for this server becomes clear when consid-
ering that concurrent backups might run at the same time. I learned that when configuring
more than one time machine backup location on a Mac, the system is smart enough to not
back up to both at the same time — preventing the system I/O from grinding to a halt do-
ing lengthy backups to two (or even more) locations.

Configuring the Backup Server
A base installation of a FreeBSD release of choice (ideally still supported) with the latest se-

curity and errata patches installed goes without explicitly writing about it. We chose not to
use a jail here, although nothing is stopping us from doing so. First, install the Samba package:

pkg install samba419

Next, we configure our backup storage for ZFS. In my case, I have a dedicated pool aptly
named backup and mounted at the same location (/backup). I create a separate dataset for
Time Machine and set a quota and reservation, since I store other data on it and want to re-
serve some space for those files as well.

zfs create -o quota=1.5T -o reservation=1.5T backup/timemachine

I know I will have two users (Tammy and Tim, Alice and Bob are on holiday) backing up
their Macs to that destination. I value both of them equally, so both will get the same space
reservations and quotas set. Remember that a quota and reservation on a dataset applies to

2 of 5

35FreeBSD Journal • July/August 2024

all datasets below it as well. The 1.5 TB will also apply to their datasets, limiting them already.
But it’s fine for them to run with 500GB each, so I set a refquota and refreservation to
only apply to that individual dataset.

zfs create -o refquota=500g -o refreservation=500g backup/timemachine/tammy
zfs create -o refquota=500g -o refreservation=500g backup/timemachine/tim

The two of them will never be able to log into my backup server (they don’t care anyway),
but they still need to have a user on the system to mount the storage for Time Machine. I
ran adduser for both of them, giving them no home directory (/var/empty) and also no
shell access (/usr/sbin/nologin).

Run chmod and chown commands on their dataset mountpoints to protect those direc-
tories from prying eyes.

chmod -R 0700 /backup/timemachine/tammy
chmod -R 0700 /backup/timemachine/tim
chown -R tim /backup/timemachine/tim
chown -R tammy /backup/timemachine/tammy

The last thing to do is setting a password on the Samba side for those two users. This is
the password needed for the prompt on macOS when mounting the time machine backup
volume.

smbpasswd -a tim
smbpasswd -a tammy

Avahi Configuration
That’s all for required software — straightforward and easy enough. Next we need to

create two configuration files. One for the time machine service and the other one for the
Samba configuration. The time machine service runs with Avahi — no not the lemurs from
Madagascar, the software. This zeroconf network implementation enables programs to
publish and discover services (like our time machine) in the local network. The configuration
file is XML based, resides in /usr/local/etc/avahi/services/timemachine.service
(create the file when it does not exist yet) and looks like this:

<?xml version=”1.0” standalone='no'?>
<!DOCTYPE service-group SYSTEM “avahi-service.dtd”>
<service-group>
 <name replace-wildcards=”yes”>%h</name>
 <service>
 <type>_smb._tcp</type>
 <port>445</port>
 </service>
 <service>
 <type>_device-info._tcp</type>
 <port>0</port>
 <txt-record>model=RackMac</txt-record>
 </service>
 <service>
 <type>_adisk._tcp</type>
 <txt-record>sys=waMa=0,adVF=0x100</txt-record>

3 of 5

36FreeBSD Journal • July/August 2024

 <txt-record>dk0=adVN=FreeBSD TimeMachine,adVF=0x82</txt-record>
 </service>
</service-group>

The file defines which ports to listen on for Samba services (445), how the icon looks for
the mounted drive (RackMac) and what the display name for it should be (FreeBSD Time-
Machine). It’s fine to change the latter to give it a more descriptive name. I did not change
any other parts of this file.

Samba Configuration
Samba is the open source implementation of the SMB protocol and has been around for

32 years. In the beginning, its main purpose was for compatibility between Unix systems and
Windows. Active Directory integration, Domain Controller and other functionalities were
added as Windows grew those appendixes. Since there is not a single Windows box involved
in this setup (you can hear the sound of a sigh of relieve here), we use Samba’s file sharing
functionality as part of AFP here.

The samba configuration file is under /usr/local/etc/smb4.conf and contains this:

[global]
workgroup = WORKGROUP
security = user
passdb backend = tdbsam
fruit:aapl = yes
fruit:model = MacSamba
fruit:advertise_fullsync = true
fruit:metadata = stream
fruit:veto_appledouble = no
fruit:nfs_aces = no
fruit:wipe_intentionally_left_blank_rfork = yes
fruit:delete_empty_adfiles = yes

[TimeMachine]
path = /backup/timemachine/%U
valid users = %U
browseable = yes
writeable = yes
vfs objects = catia fruit streams_xattr zfsacl
fruit:time machine = yes
create mask = 0600
directory mask = 0700

Two sections (global and TimeMachine) define the necessary options for the backup
destination. The lines prefixed with fruit: establish compatibility with macOS. Individual
documentation for these lines is in the Samba documentation (see link in References at the
end of the article). Change the path line in the [TimeMachine] section to the one created
earlier on FreeBSD. The %U part is a placeholder for individual user names (tammy and tim
in our case) backing up their files. That way, when adding another user later, we do not need
to change this line at all. The create and directory masks ensure proper permissions so that
the files don’t get intermixed and users can’t see or change each others backups.

4 of 5

37FreeBSD Journal • July/August 2024

Starting up
The remaining steps boil down to enabling and starting the dbus (avahi) and samba

services.

service dbus enable
service dbus start
service samba_server enable
service samba_server start

On the macOS side (the backup clients), go to the finder and press CMD-K (Shortcut
for “Connect to Server”). Enter smb://server.ip.or.dns. If all goes well, enter the user-
name and password. This is the one for tim or tammy that we entered in the smbpasswd
dialog earlier. If that succeeds, the share gets mounted into the system. Next, head to the
time machine configuration dialog and add a new time machine volume. Make sure to visit
the options button in there and check the box for the encrypted backup. You can only set
this once before the initial backup and not afterward. You can also limit the amount of disk
space the backups should consume, but that is optional, since we did it on the ZFS level al-
ready. Next, the long initial first backup can take place. After that finishes, time machine will
backup up the Mac to this location by automatically mounting and unmounting the share
when reachable on the network.

Summary
That’s all. The samba configuration is easy enough to do and users should be able adapt

it to their own needs. I found the solution just as reliable as the old one. I’ve adjusted my An-
sible playbooks to use the new Samba-based setup. I still enjoy the fire-and-forget approach
to backup up my Mac, knowing that I can pull individual files or the whole installation back
when I need to, with the most current files that I had worked with.

References and Sources
• Samba Documentation
• Reddit Post
• FreeBSD Forums Post
• Dan Langille’s blog

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project
and member of the documentation engineering team. In the past, he served on the
FreeBSD core team for two terms. He administers a big data cluster at the University of
Applied Sciences, Darmstadt, Germany. He’s also teaching a course “Unix for Develop-
ers” for undergraduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

5 of 5

https://www.samba.org/samba/docs/current/man-html/vfs_fruit.8.html
https://www.reddit.com/r/homelab/comments/83vkaz/howto_make_time_machine_backups_on_a_samba/
https://forums.freebsd.org/threads/samba-functions-but-unable-to-use-it-as-a-macos-time-machine-destination.79896/#post-655905
https://dan.langille.org/2023/09/28/creating-a-time-capsule-instance-using-samba-freebsd-and-zfs/
https://www.bsdnow.tv/
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

38FreeBSD Journal • July/August 2024

Acouple months ago, I had the opportunity to attend and speak at this year’s BSD-
Can in Ottawa, one of the three big yearly BSD conferences (the other two being
AsiaBSDCon and EuroBSDCon). This was my first time in North America — I hail

from Belgium, the land of waffles, beer, and taking 652 days to form a government — so
I started off my trip with a couple weeks of tour-
ing around the Northeast Corridor before flying out
from Boston to Ottawa for BSDCan.

My scheduled talk was on my Google Summer
of Code (GSoC) work on porting the BATMAN im-
plementation in the Linux kernel (`batman-adv`) to
FreeBSD, and, more generally, its use cases in projects
like Freifunk, and the LinuxKPI system on FreeBSD for
porting Linux kernel drivers.

Upon arrival at the quite quaint Ottawa Interna-
tional Airport, I was whisked away by bus and Otta-
wa’s light rail to the University of Ottawa where the
conference is held. I checked in to the speaker ac-
commodations, the 90U dorms, which were quite
nice. The students clearly have it quite good here!
I was sharing a room with Kirk McKusick who hadn’t
yet arrived, so I headed over to the Father & Sons tav-
ern, the de facto hangout spot for BSDCan attend-
ees, to try and get to know some of them. I was ar-
riving at the tail end of the Goat BoF (Birds of a Feather) so there were quite a few people
there. I had a couple pints and some hearty poutine and then headed back to the dorms to
meet up with Kirk, who I hadn’t seen since last EuroBSDCon in Coimbra, Portugal.

On the first two days of BSDCan, tutorials are held in parallel with the FreeBSD DevSum-
mit. I attended the DevSummit, which is where the FreeBSD developers and other guests
get together to discuss the goings-on and future of the project. There were also a couple
interesting talks, such as Mitchell Horne’s presentation of RISC-V hardware and his work
supporting it in FreeBSD, or Alex Pshenichkin’s quite interesting talk on Antithesis’ deter-

BY AYMERIC WIBO

1 of 3

BSDCan 2024

Conference Report

BSDCan is the definitive

BSD event in North

America and welcomes

BSD Unix developers,

administrators,

and users of every level

of experience.

39FreeBSD Journal • July/August 2024

ministic hypervisor (the “Determinator”, based on FreeBSD’s bhyve) for software testing and
the different considerations in running deterministic virtual machines that aren’t immedi-
ately obvious at all.

During the DevSummit, there’s also a moment set aside for “Next Release Planning”.
This is where everyone pitches in and discusses the features to enter (or be axed from) the
next release of FreeBSD (15.0 in this case). These features are categorized into completed
in-tree features, completed features that have yet to be upstreamed, features that are being
worked on, features that really need to be worked on, and features that would be nice-to-
haves but aren’t priorities. My very small contribution to this list was S0ix idle support which
is necessary for sleeping on newer CPU’s (including AMD Framework laptops), for which
work was started but subsequently abandoned a few years ago. I see focusing on consum-
er hardware support as an important way to get FreeBSD into the hands of more people,
and for them not to be turned away by X or Y feature not working on their shiny new laptop,
and I’m glad to see that this sentiment seems to be
echoed by others in the project.

The next two days were the main conference days.
I attended Kirk’s talk on secrets to FreeBSD’s suc-
cess and Shawn’s State of the Hardened Union (with
whom I talked a couple times during the conference
with regards to BATMAN and open wireless networks)
before presenting my own. It was the first time I’d
given a proper talk, so I didn’t really know what to ex-
pect or if I’d be comfortable speaking about a tech-
nical subject in front of an audience. In sum, I’m quite
happy, but I did speed-run my talk a bit, and feedback
I received after the talk did affirm that I was going
much too fast. Something for me to work on for next
time ;) I do think I managed to get my main points
across, though, and I was happy with the questions I
received afterwards.

On the last day, I attended Warner Losh’s talk on allowing people to contribute to
FreeBSD through GitHub, which I think is very important for new contributors as it lowers
the barrier to entry vs. learning how Phabricator works, especially for greenhorn developers
who have learned their craft exclusively through tools like GitHub. In fact, when I first tried
to submit my first FreeBSD contribution, it was through GitHub, before understanding that
was not the preferred way to do it. The last talk I attended was on Sheng-Yi Hong’s work
on kernel debugging with LLDB, which is something that I’m personally looking forward to.
Sheng-Yi Hong was a fellow GSoC student during the year I was working on BATMAN, so it
was great to meet him in the flesh and chat with him. He’s a cheerful and upbeat guy, and
I’m looking forward to meeting him again at future conferences!

After the closing session and the ritual auction was the social event at Sens House,
which is one of the things I enjoy most about these conferences. I feel like I almost get
more value out of the social aspect of conferences than the talks themselves; it’s the op-
portunity to meet the people you only know through their handle or their patch notes. I

2 of 3

Conference Report

During the DevSummit,

there’s also a moment

set aside for “Next Release

Planning”.

40FreeBSD Journal • July/August 2024

have made many friends and been exposed to a lot of different use cases and perspectives
regarding FreeBSD and other software through these interactions that I likely wouldn’t
have had otherwise.

The next day, after an insanely copious breakfast at Father & Sons, Kirk and I packed up
and headed to the airport as we had a flight to Chicago, where we were meeting up with
Eric Allman (who sadly couldn’t make it to BSDCan this year) at O’Hare.

Shortly after, we learned of the very unfortunate news that, after the last day of the con-
ference, Michael Karels had passed away. Mike was a very important and beloved figure
in the development of the 4.4BSD-Lite release, which all modern BSD’s trace back to. I’m
very grateful to have had the opportunity to meet him at BSDCan, and I wish his family and
friends all the best in these difficult times.

After a day of sight-seeing in the Windy City, we took the 3-day California Zephyr train
to Berkeley, where I stayed for a few weeks before it was time for me to fly back home, and
that was the end of my BSDCan adventure.

Overall, the conference and its general organization were quite excellent, from the cater-
ing to the AV to the surrounding events. I’d like to extend a huge thank you to the people
who broke their backs behind the scenes to get this all done and done extremely smooth-
ly and professionally at that. BSDCan covered my travel expenses and handled everything
related to accommodation on their side, which really helped to alleviate some of the major
points of stress of a trip so far away from home. The talks were engaging, I got to meet a
bunch of wonderful and interesting people, and the beer at Father & Sons was cold.

If you have a subject you’d like to talk about, I really recommend submitting a paper. I’m
looking forward to attending again next year!

AYMERIC WIBO is a CS student at UCLouvain in Belgium and has been using and
developing projects based on FreeBSD since high school. His primary interests lie in
graphics and networking..

Conference Report
3 of 3

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
mailto:maurer.jim@gmail.com

BSD Events taking place through November 2024
BY ANNE DICKISON
Please send details of any FreeBSD related events or events
that are of interest for FreeBSD users which are not listed here
to freebsd-doc@FreeBSD.org.

41FreeBSD Journal • July/August 2024

September 2024 FreeBSD Developer Summit
September 19-20, 2024
Dublin, Ireland
https://wiki.freebsd.org/DevSummit/202409

The September 2024 FreeBSD Developer Summit will be colocated with EuroBSDCon 2024,
which takes place in Dublin, Ireland. This is a by-invitation event. FreeBSD committers will
be welcome to register themselves using this wiki; non-committers must be sponsored by a
committer to attend. Attendees must also attend EuroBSDcon 2024 to access all devsummit
activities.

EuroBSDCon 2024
September 19-22, 2024
Dublin, Ireland
https://2024.eurobsdcon.org/

EuroBSDCon is the International annual technical conference held in a different European
country each year. It focuses on gathering users and developers working on and with 4.4BSD
(Berkeley Software Distribution) based operating systems family and related projects. The
FreeBSD Foundation is pleased to again be a Silver Sponsor.

All Things Open
October 27-29, 2024
Raleigh, NC
https://2024.allthingsopen.org/

All Things Open is the largest open source/open tech/open web conference on the East
Coast and one of the largest in the United States. It regularly hosts some of the most well-
known experts in the world, as well as nearly every major technology company. FreeBSD is
proud to be a non-profit partner for this year’s All Things Open.

1 of 2

mailto:freebsd-doc@FreeBSD.org
https://wiki.freebsd.org/DevSummit/202409
https://2024.eurobsdcon.org/
https://2024.allthingsopen.org/

42FreeBSD Journal • July/August 2024

OpenZFS User and Developer Summit 2024
October 26-29, 2024
Portland, OR
https://openzfs.org/wiki/OpenZFS_Developer_Summit

The twelfth annual OpenZFS Developer Summit and first annual OpenZFS User Summit will
be held in Portland, Oregon, USA Oct 26-29 (Sat-Tue), 2024.
User Summit Themes include:

• Storage LAN and WAN Networking for OpenZFS
• Mixed Operating System OpenZFS Environments
• Machine-readable and writable OpenZFS including JSON, SNMP, REST
• Security, Encryption, and MPAA TPN Compliance
• Channel Program Workflows
• Extreme OpenZFS including All-Flash, DRAID, Special Allocation Classes
• Candidate theme: Continuous Replication Brainstorming
• Candidate theme: User-space OpenZFS
• Candidate theme: OpenZFS DMU Object Storage

The Foundation is pleased to be a Bronze Sponsor.

Fall 2024 FreeBSD Summit
November 7-8, 2024
San Jose, CA
https://freebsdfoundation.org/news-and-events/event-calendar/fall-2024-
freebsd-summit/

The FreeBSD Summit is an annual event to bring the community together to learn, network,
and drive FreeBSD use. Each year, the event gathers FreeBSD users, including decision mak-
ers, software engineers, and individual contributors and users, to share best practices and
successes in their use of FreeBSD. The FreeBSD Summit also provides the unique opportuni-
ty to discuss issues with the developer community in person.

Please note: For the Fall 2024 event, the name is changing from “Vendor Summit” to
“FreeBSD Summit” to better represent the audience and prepare for its growth in future
years.

Registration will open in late September.

Thank you to our Venue Sponsor, NetApp and our Gold Sponsor, the FreeBSD Foundation!

2 of 2

https://openzfs.org/wiki/OpenZFS_Developer_Summit
https://freebsdfoundation.org/news-and-events/event-calendar/fall-2024-freebsd-summit/
https://freebsdfoundation.org/news-and-events/event-calendar/fall-2024-freebsd-summit/

	contents_button:
	contents_button 1:

