
March/April 2015 5

ZFS is known for its reliability and for protecting data
from the dreaded bitrot. However, a concerning number
of users have run into trouble because they did not
understand just how different ZFS is from every previous
file system they have ever used. The goal of this article
is to set out a number of the best practices for using
ZFS to help you avoid running into these common mis-
conceptions. This article covers hardware, configuration,
tuning, and features, as well as a few other tips.

Beware Hardware RAID
The most costly mistake people make is not
giving ZFS control over their redundancy. It is
preferable for ZFS to provide the redundancy
(using ZFS mirroring or RAID-Z), rather than
using a hardware RAID controller. Important
data in ZFS is stored multiple times, in what
are called ditto blocks. Pool-wide data has
three ditto blocks (so is stored three times),
and file system metadata has two ditto
blocks. In addition, ZFS purposely stores the
ditto blocks on different disks, so that the
failure of any one disk cannot lead to the
loss of all copies of the metadata. This gives
ZFS better visibility into what’s actually going
on with the hardware, allowing more types
of errors to be corrected.

When a ZFS pool is created on top of
hardware RAID, the RAID controller presents
a single logical volume to the operating sys-
tem (and therefore to ZFS). When ZFS has
only one disk to work with, it doesn’t have
anywhere to store the parity information
required to rebuild the array in the event of
a failure, and no way to ensure the ditto
blocks end up on separate disks. While this
doesn’t seem like a very large issue because
the underlying RAID controller can rebuild
the missing disk from parity that exists at the
hardware RAID level, using hardware RAID

means you do not get the benefit of ZFS’
block level resilvering process. The hardware
has to resilver every byte on the entire disk,
rather than only the blocks that contain
active data. Hardware RAID also doesn’t help
in the situations where ZFS excels: detecting
and repairing flipped bits and other types of
otherwise undetectable errors in your data
or the file system itself. ZFS’ checksumming
is one of its most powerful features, but if
there is no ZFS redundancy, it can only
detect, not repair, the errors.

Hardware RAID controllers can also cause
countless other issues, and you are much
better off with a less expensive simple HBA
controller instead. Hardware RAID controllers
will sometimes mask certain errors and
silently retry commands, hiding this informa-
tion from ZFS. This is mostly a holdover from
the era where the operating system could
not be trusted to gracefully deal with the
error. Without this information, ZFS cannot
make informed decisions, nor can it self-heal
a failing drive by reading the data from the
parity location(s).

Even when trying to use a RAID controller
as a simple HBA (in “IT”, or “JBOD” mode),
many controllers will require that you create
a single disk RAID 0 (or a JBOD) out of each
disk before you can use it. In these cases,

�ZFS BEST PRACTICES�•
BY ALLAN JUDE

6 FreeBSD Journal

when it comes time to replace a failed disk,
one cannot simply just swap the disk out of the
chassis, but an operator must use software pro-
vided by the adapter manufacturer to create
the new volume with the replaced disk. Such a
tool may not exist, or may not be supported on
FreeBSD, requiring a reboot to access the BIOS
level tools provided by the adapter. Suddenly
your hot-swap drives still require a reboot and
are not providing the high availability you
expect. One of the other advantages to ZFS is
pool portability. All of the disks in a pool can be
moved to another server, easily imported, and
brought back into operation in short order.
However, if the disks are labeled by manufac-
turer A’s RAID utility, they won’t be accessible
by manufacturer B’s RAID controller. This might
make it impossible to read the disks if the con-
troller fails, and cannot be replaced with an
identical controller.

If some outside factor absolutely requires that
you use hardware RAID, always present a pair of
logical volumes to be mirrored in ZFS, or 3 or
more volumes for RAID-Z. The added redundan-
cy provided by the hardware RAID will cost
capacity and performance, but not taking
advantage of ZFS’ better redundancy will even-
tually make you wish you had. Also be sure to
disable “write back” mode on the controller. If
write back is not disabled, the cache flush com-
mands ZFS relies upon to ensure all the pending
data is actually written to the disk are ignored,
possibly causing data loss. Ultimately, ZFS on top
of hardware RAID decreases performance while
adding complexity, and that increases risk.

ECC Ram
Many articles and posts will emphatically state
that in order to use ZFS, you must have ECC
RAM. To quote Matt Ahrens, cocreator of ZFS:
“ZFS on a system without ECC is no more dan-
gerous than any other file system on a system
with ECC.” The features of ZFS are extremely
compelling and extraordinarily useful, no mat-
ter what role the machine is playing. The data
protections provided by ZFS outclass that of
every other file system, even without the bene-
fit of ECC RAM. Don’t let the FUD scare you
away from running ZFS, even on a single disk
on your laptop. Just be sure to take careful
backups.

If your goal is high availability, the extra cost
of ECC is easily justifiable. Server grade hard-
ware uses ECC RAM, because it mitigates the

risk of memory errors, and the application
crashes those errors can cause. Using ECC RAM
reduces (but does not entirely eliminate) the
risk of corruption on in-flight data, after it
leaves the application, but before ZFS has cal-
culated the checksum and written it to stable
storage. If you care about the reliability and
availability of your system, you should use ECC
RAM, regardless of what file system you use.

Backups Are Still Required
While the reliability and durability of ZFS make
us feel much safer about our data, too few
people still maintain proper backups of the
data they store on their ZFS pools. No amount
of RAID redundancy is as good as a backup.
Accidentally destroy the wrong pool? Where is
your backup? Pull the wrong disk while replac-
ing a failed one? Where is your backup? Add
an extra disk as a new vdev instead of attach-
ing it to the existing mirror? Where is your
backup?

ZFS provides a number of features that make
taking backups much easier and safer. The first
is instantaneous snapshots. Instead of backing
up a live system, where files can be changing
constantly, take a backup of a recursive snap-
shot of the system. This way, everything con-
tained in the backup is saved as it was at an
exact moment in time, even if the backup takes
multiple days to complete. The other powerful
backup feature is the built-in incremental repli-
cation system. The first advantage to this
method is that, compared to walking the file
system with Bacula or rsync, ZFS walks its inter-
nal representation of the data, resulting in a
fast contiguous read of the blocks. The output
of “zfs send” can be incremental or full. In
incremental mode, the output maintains the
copy-on-write aspects of the data stream,
including all the snapshots. This output can
either be stored as massive binary block (a ZFS
data stream), or piped to “zfs receive”, where a
replica of the dataset can be recreated on
another machine, effectively creating a “warm
spare” of the dataset. ZFS also has another fea-
ture that is great for taking live backups: pool
splitting. When your pool consists of mirror
vdevs, with ideally at least 3 devices in each
mirror set so that the pool is not at risk from a
single device failure during this operation, one
device from each mirror vdev can be detached
by the “zpool split” command, creating a new
pool. This new pool contains one drive from

�

March/April 2015 7

each vdev and all of the data from the current
pool. These disks can then be ejected and
moved to an off-site location, similar to a tape
backup. New disks are then swapped in, and
rejoin the mirror set and resilver. Repeated on an
ongoing basis, this process provides a complete
offsite backup that takes only a few seconds to
create. Drives can be reused once they have
exceeded your backup retention threshold.
Compared to a regular backup, the pool split
method can be less performance impacting
because the backup time is amortized over the
period after the new drives are added to the
pool. As new data is written to the pool, it is
mirrored to the regular mirror devices, but also
to the device that will be split off when the next
backup is taken. In this setup, it may be wise to
adjust the resilver throttling
(vfs.zfs.resilver_delay), to avoid unduly impacting
performance when the new drives are added
after the split.

Disk Labeling
There are a number of ways to handle labeling
disks and creating the logical connection
between the device exposed by the operating
system and the physical disk in its physical loca-
tion in the chassis. The one that has worked
best for me in production has been the physical
slot number followed by the disk’s serial num-
ber. For example, our one chas-
sis has 24 drives in the front,
and 12 more in the rear. The
drive in slot 6 in the front is f06-
WMC1F125320, and a drive in
the rear might be r02-9WM7HATN. There are a
number of reasons to use the serial number,
mainly inventory and warranty management;
the serial number is required to check if the
drive is still under warranty and to get it
replaced. It is a convenient unique identifier,
although depending on the model and drive
manufacturer, it can be a bit unwieldy. The serial
number for one of my Intel SSDs is
CVDA333604282403GN, which one would
struggle to fit on a label on the front of a 2.5
inch drive carrier, and doesn’t fit within the 15
character GPT label. It is best to truncate and
keep the most significant digits, so if the serial
numbers share a common beginning, use the
last characters of the serial number. Adding the
slot number as a prefix helps operators and data
center technicians more quickly identify the cor-
rect physical drive, without having to compare
the entire serial number, especially when a series

of drives may have a common prefix in the serial
number. The next step is to change the operat-
ing system’s representation of the drive to
match. The recommended approach is to use
GPT partition labels, like so:

This will create an alias for da0 called
/dev/gpt/f01-9WM6T60L

Note: The maximum length of the label is 15
characters.

This way, even if the order in which the oper-
ating system recognizes the devices changes,
the name of the device stays the same. It also
means that the output of “zpool status” will
show each disk, with its location and serial num-
ber. With this technique, a missing disk will be
obvious, and it will be easy to communicate to
the operator or data center technician which
disk needs to be replaced.

FreeBSD offers a number of different ways to
label disks, and it may be helpful to disable the
unused ones, to avoid ZFS picking up those
device names instead:

/boot/loader.conf:

Disk Ident example:

GPT ID example:

Notice how at first glance, the two appear to
be identical. The difference is at the beginning
of the string, rather than the end.

Another disadvantage to Disk Ident and
GPTID is that the partition identifiers get tacked
on the end, so the 2nd partition on the disk is

which blends into the unique ID of the disk
In more advanced setups with SAS expanders,

dual ported disks, and multiple controllers, each
disk may be presented to the operating system
multiple times, once for each unique path.

�

gpart modify -i 2 -l f01-9WM6T60L da0

kern.geom.label.disk_ident.enable=1
kern.geom.label.gptid.enable=0

/dev/diskid/DISK-07013121E6B2FA14
/dev/diskid/DISK-%20%20%20%20%20WD-WCC131365642
/dev/diskid/diskid/DISK-%20%20%20%20%20%20%20%20%20%20%20%20Z300HTCE

/dev/gptid/b829bf8c-46ad-11e3-ae0f-002590721162
/dev/gptid/b88eeff5-46ad-11e3-ae0f-002590721162

/dev/diskid/DISK-07013121E6B2FA14p2,

8 FreeBSD Journal

FreeBSD’s GEOM storage management layer has
a system for this, gmultipath. This writes a
unique label to the disk, and then when 2 or
more devices appear with the same label, they
are classified as multiple paths to the same
physical disk.

In the end, it looks something like this:

Setting Up the Disks
Before creating the pool, the disks need to be
prepared. There are a number of guides, blogs,
and other resources that state that ZFS should
always be used on an entire disk, not a partition.
While this is true in Solaris, because of the way
the disk cache works, it is not true under
FreeBSD. There are a few considerations at this
point. If the system will boot from the pool, then
all of the disks should contain the ZFS boot code.
In case of a failure, it may not be possible to pre-
dict which disk the system will try to boot from.
The freebsd-boot partition should be 512kb; this
is just shy of the maximum imposed by the
FreeBSD ZFS boot blocks. The purpose behind
using the maximum size is to ensure that there
will be enough room for the boot blocks to grow
over time. All of the partitions created on the disk
should be aligned to 4k boundaries, to keep the
partition layout consistent across all the disks. This
can be accomplished by using “-a 4k” with each
gpart command when creating the partitions.

Even if the current disks use 512 byte sectors,
in the future it may not be easy to obtain 512
byte sector disks to replace these, so setting up
the entire pool based on 4k sectors ensures that
complications will not arise when a disk needs to
be replaced in the future. With that same goal in
mind, the partition that will hold the ZFS data
should be created slightly smaller than the avail-
able size of the disk. This extra space can be used
as a swap partition. This slack will offer some wig-
gle room in the case where the replacement disk
does not have the exact same sector count as the
original disk. Lastly, the ZFS pool itself should use
4k sectors. Again, even if your drives are 512 byte
sectors, their future replacements may not be,
and it is not possible to mix sector sizes, nor to
change the ZFS sector size after the pool is creat-
ed. To force ZFS to use a 4k sector size, set the
sysctl vfs.zfs.min_auto_ashift=12 (2^12 = 4k)
before creating the pool. The downside to 4k
sectors is slightly worse space efficiency and pos-
sibly worse performance for very small reads or
writes (less than 4k). In the case of a database
type workload and sub 1 TB disks, 512 byte sec-
tors may be desirable.

Some disk models include an “XP Jumper,”
which offsets each LBA address by 1, so that the
default starting location of the first MBR partition
(63rd sector) becomes the 64th 512 byte sector
and is therefore 4k aligned. However, if this
jumper is set and we ask the partitioning tool to
align the partitions to 4k, they will all be off by 1
sector, and will cause the performance penalties
we were trying to avoid in the first place.

Pool Layout
Determining the best way to lay out the disks
and vdevs in your pool is one of the hardest
questions facing a user creating a new pool.

There are many factors to consider, and
once the decision is made, it generally
cannot be changed. The biggest factors
are random I/O performance, streaming
performance, space efficiency, and fault
tolerance. Each different configuration
provides different benefits. For the best
IOPS performance for random reads, the
best solution is always more vdevs. Sets of
mirrors (equivalent to RAID 10) provide
the best performance because the IOPS of
each vdev is effectively limited to that of
the slowest device, so 12 disks in 6 mirror
sets provides 6x the IOPS of a single disk,

whereas all 12 disks in a single RAID-Z (1, 2, or
3) provides only 1x the IOPS of a single disk.

�

gmultipath status
multipath/f01-WMC1F125320 OPTIMAL da0 (ACTIVE)

da36 (PASSIVE)
multipath/f02-WMC1F125298 OPTIMAL da1 (ACTIVE)

da37 (PASSIVE)
multipath/f03-WMC1F125506 OPTIMAL da2 (ACTIVE)

da38 (PASSIVE)

gpart create -s gpt ada0
gpart add -t freebsd-boot -l bootfs0 -s 512k -a 4k ada0
gpart add -t freebsd-swap -l swap0 -s 2g -a 4k ada0
gpart add -t freebsd-zfs -l f01-9WM6T60L -a 4k ada0
gpart show -l ada0
=> 34 7814037100 ada0 GPT (3.7T)

34 6 - free - (3.0k)
40 1024 1 bootfs0 (512k)
1064 984 - free - (492k)
2048 4194304 2 swap0 (2.0G)
4196352 7809839104 3 f01-9WM6T60L (3.7T)

7814035456 1678 - free - (839k)

More performance can be gained by running the
12 disks as 2 RAID-Z2 vdevs, or even 3 or 4 RAID-
Z1 vdevs, at the cost of less usable space, but the
performance never reaches that of the mirror
sets. In the case of streaming performance,
where IOPS make much less of a difference, spin-
dle count is all that matters.

Assume a modest set of commodity spinning
disks, 1 TB in size and capable of 250 IOPS and
streaming read/writes at 100 MB/s:

Using a larger number of smaller groups of
disks increases performance at the cost of
reduced usable space (more parity). Streaming
read and write performance is constrained by the
number of non-parity spindles. This leads to
another consideration for both random and
streaming performance: spindle count. An array
of 12x 1 TB drives will usually outperform 6x 2 TB
drives, because the greater spindle count increas-
es both IOPS and streaming performance.

Avoiding Single Points of Failure
Avoiding single points of failure will increase the
availability of your pool. With some planning and
informed design decisions, the same hardware
can be organized in a more fault-tolerant config-
uration. In larger installations, where all the disks
may not reside in the same physical chassis, con-
sideration should be given to which disks belong
head with 3 external JBOD chassis with 36 disks

each should be configured such that each RAID-
Z2 vdev consists of 2 disks from each JBOD (18
vdevs of 6 disks each). In this configuration, even
if one JBOD’s power supply, HBA, or cabling fails,
each vdev is still functional. Whereas if the con-
figuration consisted of vdevs made up of disks all
in the same JBOD, a number of vdevs would be
faulted, and the system would not be able to
continue. The same approach can be taken in
smaller systems that might not have multipath to
tolerate an HBA failure. If constructing mirror

March/April 2015 9

�

Disks Configuration Read IOPS Write IOPS Read MB/s Write MB/s Usable Space Fault Tolerance

2 1x 2 disk Mirror 500 250 200 100 1 TB 1

3 1x 3 disk Mirror 750 250 300 100 1 TB 2

1x 3 disk RAID-Z1 250 250 200 200 2 TB 1

4 2x 2 disk Mirror 1000 500 400 200 2 TB 1 (2*)

1x 4 disk RAID-Z1 250 250 300 300 3 TB 1

5 1x 5 disk RAID-Z1 250 250 400 400 4 TB 1

1x 5 disk RAID-Z2 250 250 300 300 3 TB 2

6 3x 2 disk Mirror 1500 750 600 300 3 TB 1 (3*)

2x 3 disk Mirror 1500 500 600 200 2 TB 2 (4**)

1x 6 disk RAID-Z1 250 250 500 500 5 TB 1

1x 6 disk RAID-Z2 250 250 400 400 4 TB 2

12 6x 2 disk Mirror 3000 1500 1200 600 6 TB 1 (6*)

4x 3 disk Mirror 3000 1000 1200 400 4 TB 2 (8**)

2x 6 disk RAID-Z1 500 500 1000 1000 10 TB 1 (2*)

2x 6 disk RAID-Z2 500 500 800 800 8 TB 2 (4**)

36 18x 2 disk Mirror 9000 4500 3600 1800 18 TB 1 (18*)

12x 3 disk Mirror 9000 3000 3600 1200 12 TB 2 (24**)

1x 36 disk RAID-Z2 250 250 3400 3400 34 TB 2

2x 18 disk RAID-Z2 500 500 3200 3200 32 TB 2 (4**)

4x 9 disk RAID-Z2 1000 1000 2800 2800 28 TB 2 (8**)

6x 6 disk RAID-Z2 1500 1500 2400 2400 24 TB 2 (12**)

* Provided that the failures are limited to 1 per vdev
** Provided that the failures are limited to 2 per vdev

10 FreeBSDJournal

pairs, ensure that each disk is paired with anoth-
er disk that is not on the same controller, so the
failure of one controller only degrades, rather
than faults, each affected vdev.

Compression
ZFS supports transparent compression where data
is compressed as it is written to the disk and
decompressed as it is read back, without the user
or application needing to be aware. In addition to
the obvious decrease in storage utilization this
provides, it also increases performance. Even with
the small CPU usage penalty, compressed data can
be read from the disks at the same speed as
uncompressed data, but once decompressed, pro-
vides a much higher effective throughput. If a disk
can read 100 MB/s, and data is compressed 50%,
then that data can now be read at effectively 150
MB/s. The same applies to writes, where there is
increased throughput and decreased latency
because a smaller amount of data takes less time
to write. This makes compressed datasets very
useful for databases, which often contain highly
compressible text and always benefit from higher
throughput and lower latency. The newer LZ4
compression algorithm used in ZFS also has an
“early abort” feature, which will store a block
uncompressed if the compression ratio on the first
bit of the block is less than 12.5%. This further
reduces the performance impact of using com-
pression, since incompressible files are quickly
skipped. With this in mind, you can consider using
LZ4 compression on the entire pool.

Deduplication
ZFS supports online deduplication, meaning data
is deduplicated as it is written. While this feature
appears attractive, you will see it is quite expen-
sive. Here is why. In order to deduplicate the data
as it is written, ZFS builds a hash table of the
SHA256 checksum of each block (called the
deduplication table, or DDT). The DDT is stored in
main memory as part of the ARC (Adaptive
Replacement Cache). As new blocks are queued
to be written, they are first compared to the DDT,
and if a match is found, the ref count of the
existing block just needs to be increased, instead
of writing out the block. If no match is found,
the new data is written and the new checksum is
added to the DDT. Each entry in the DDT takes
320 bytes of memory or more. If there is not
enough room in the metadata portion of the
ARC, the DDT entries are written to the L2ARC
(usually an SSD or other fast storage device used
as a second level cache) where they take even

more space. In the typical case of a zvol backed
iSCSI target, the block size is 8 KB, meaning 1 TB
of unique data would generate nearly 48 GB of
DDT. If that won’t fit in ram, it is instead stored in
the L2ARC, but that has a memory cost of its
own. In addition, DDT entries take more space on
disk than they do in memory, and have worse
performance. In the event of a problem with the
pool, the DDT needs to be able to fit in memory
when the pool is imported, and if it cannot, the
pool may not be able to be imported. DDT and
L2ARC mappings also count as metadata, which
by default is restricted to only 1/4 of the available
ARC memory. If you are going to use deduplica-
tion, the metadata limit will need to be adjusted.
The benefit of deduplication has a very high
cost—if your dataset is only going to get a mod-
erate deduplication ratio, you are most likely
much better off just using LZ4 compression. If I
still have not dissuaded you from using dedupli-
cation, you should conduct some tests on your
data to ensure you are getting a very good
deduplication ratio, and calculate how much ram
will be required to store the DDT for all of your
data. Be sure to leave room in the ARC for
actual metadata, in addition to the DDT and
L2ARC index, and, of course, the cache of your
actual data. You will need a lot of ram.

Reservations
The pooled nature of storage in ZFS means that
all the available free space is available to every
dataset. Compared to the traditional way of
doing things, partitioning a RAID volume or cre-
ating separate volumes, the free space does not
become fragmented. The downside to this is that
one workload or user can consume all the avail-
able space. While this can be addressed with
quotas, that doesn’t always solve the problem.
ZFS also offers a reservation system where a spe-
cific dataset for a critical database or for security
logs can be guaranteed a minimum amount of
space unavailable to any other dataset. To ensure
that the e-commerce database never runs out of
room because of HTTP logs, give its dataset a
reservation.

Although recent improvements to ZFS have
improved the situation greatly, a ZFS pool that is
nearly full will perform badly. If the pool becomes
completely full, the administrative commands to
resolve the situation can take an exceedingly long
time. One way around this is to create a new
dataset, called “reserved,” with a reservation of
20% to 25% of the total capacity of the pool.
This will prevent that critical last bit of space from
being used up. The reservation can be relaxed to

�

March/April 2015 11

allow the administrator to perform needed oper-
ations or to tide the system over until the pool
can be expanded.

Tuning
The biggest variable in ZFS is the size of the ARC.
The ARC is where ZFS stores recently-used and
frequently-used data as well as its metadata. The
ARC provides most of the amazing performance
that comes with ZFS. The maximum size of the
ARC defaults to 1 GB less than all memory in the
system (or 1/2 of all memory in machines with lit-
tle memory). For a dedicated file server, this
makes sense; however, if there are going to be
other applications that require memory, you
might want to tune this to something more mod-
est, leaving room for other applications like a
web server or database server. The limit is set
with a tunable in /boot/loader.conf:
vfs.zfs.arc_max. Generally it is best to leave at
least a few gigabytes of memory for the OS and
for applications, but maximizing the memory
available to the ARC will increase performance.
The ARC will release memory back to the OS
when it detects memory pressure, but this is not
instant and may cause heavy swapping. As dis-

cussed earlier, the default limit on metadata is 1/4
of the ARC. If your dataset contains a very large
number of small files, it might be advantageous to
increase this value.

Hopefully these tips and best practices guide
you well and help you avoid some of the common
mistakes made by those new to ZFS. We hope to
see you join the thriving community of OpenZFS
users and developers. Special thanks to Dan
Langille, the backup guru, and Michael Dexter,
who has dressed many self-inflicted foot wounds
for various clients and shared what he learned. •

Allan Jude is VP of operations at ScaleEngine
Inc., a global HTTP and Video Streaming CDN
(Content Distribution Network), where he
makes extensive use of ZFS on FreeBSD. He is
also the host of the video podcasts BSD Now
(with Kris Moore) and TechSNAP on
JupiterBroadcasting.com. Allan is a FreeBSD
doc committer, focused on improving the
handbook and documenting ZFS. He taught
FreeBSD and NetBSD at Mohawk College in
Hamilton, Canada, from 2007 to 2010 and has
12 years of BSD UNIX sysadmin experience.

�

I S I L O N The industry leader in Scale-Out Network Attached Storage (NAS)

With offices around the world,
we likely have a job for you!
Please visit our website at
http://www.emc.com/careers
or send direct inquiries to
karl.augustine@isilon.com.

We’re Hiring!
We’re Hiring!

Isilon is deeply invested in advancing FreeBSD
performance and scalability. We are looking
to hire and develop FreeBSD committers for
kernel product development and to improve
the Open Source Community.

