
January/February/March 2025

Topic: Downstreams

FreeBSD Release Engineering:
A New Sheriff is in Town
GhostBSD: From Usability
to Struggle to Renewal
BSD Now and Then
Character Device Driver
Tutorial (Part 3)

Nov/Dec 2019 57

2025 Editorial Calendar
•	 Jan/Feb/March Downstreams

•	 April/May/June Networking

•	 July/August/Sept Contributing/Workflow

•	 Oct/Nov/Dec Embedded

https://freebsdfoundation.org/journal

LETTER
from the Foundation

J O U R N A L
®

Editorial Board
	 John Baldwin •	 FreeBSD Developer and Chair of
		 the FreeBSD Journal Editorial Board

	 Tom Jones •	FreeBSD Developer, Software Engineer,
 		 FreeBSD Foundation

	 Ed Maste •	 Senior Director of Technology,
		 FreeBSD Foundation and Member of
		 the FreeBSD Sec Team

	 Benedict Reuschling •	 FreeBSD Documentation Committer

	 Jason Tubnor •	 BSD Advocate, Senior Security Lead
		 at 	Latrobe Community Health Service
		 (NFP/NGO), Victoria, Australia

	 Mariusz Zaborski •	 FreeBSD Developer

Advisory Board
	 Anne Dickison •	 Deputy Director
		 FreeBSD Foundation

	 Justin Gibbs •	 Founder of the FreeBSD Foundation,
		 President of the FreeBSD Foundation
 		 Board, and a Software Engineer at
		 Facebook

	 Allan Jude •	 CTO at Klara Inc., the global FreeBSD
		 Professional Services and Support
		 company

	 Dru Lavigne •	 Author of BSD Hacks and
		 The Best of FreeBSD Basics

	 Michael W Lucas •	 Author of more than 40 books including
		 Absolute FreeBSD, the FreeBSD
		 Mastery series, and git commit murder

	 Kirk McKusick •	 Lead author of The Design and
		 Implementation book series

	 George Neville-Neil •	 Past President of the FreeBSD Foundation
		 Board and co-author of the Design and
		 Implementation of the FreeBSD Operating
		 System

	 Hiroki Sato •	 Chair of AsianBSDCon, Member of
		 the FreeBSD Core Team, and Assistant
		 Professor at Tokyo Institute of Technology

	Robert N. M. Watson •	 Director of the FreeBSD Foundation
		 Board, Founder of the TrustedBSD
		 Project, and University Senior Lecturer
		 at the University of Cambridge

S&W PUBLISHING LLC
PO BOX 3757 CHAPEL HILL, NC 27515-3757

	 Editor-at-Large •	James Maurer
		 maurer.jim@gmail.com

	Design & Production •	Reuter & Associates

FreeBSD Journal (ISBN: 978-0-61 5-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-51 42 • fax: 720/222-2350

email: info@freebsdfoundation.org

Copyright © 2025 by FreeBSD Foundation. All rights reserved.
This magazine may not be reproduced in whole or in part without written

permission from the publisher.

3FreeBSD Journal • January/February/March 2025

Welcome to the first FreeBSD Journal
issue of 2025! This is the Journal’s
first quarterly issue following our new

schedule announced in the fall of 2024 and it packs
a wide range of articles, a couple of conference
reports, and yet another treat from Michael’s witty
pen. Speaking of conferences, registration has just
opened for BSDCan 2025 where several of the
editorial board members will be present. Come
and join us as we are always happy to chat about
FreeBSD.

BSDCan 2025 will also be the site of the annual
FreeBSD developer summit. This year’s summit
will be bustling with activity as the developers nail
down the final plans for 15.0 which is slated for
release at the end of this year. Colin’s article covers
the upcoming schedule for 15.0 as well as other
future releases.

Eric Turgeon introduces the GhostBSD project
including an overview of its history to date and
future plans. Michael and Randall continue their
Adventures in TCP column with a deep dive into
SYN segments. Christopher Bowman’s latest
installment uses FreeBSD’s GPIO subsystem to
control LEDs. I wrap up my three-part series on
character device drivers with an article covering
memory mappings. Finally, the cast of BSD Now
provides a retrospective on 600 episodes of their
popular podcast.

As always, we love to hear from readers. If you
have feedback on any of our articles, suggestions
for a future article, or are interested in writing an
article, please email us at info@freebsdjournal.com.

John Baldwin
Chair, FreeBSD Journal Editorial Board

mailto:info@freebsdjournal.com

4FreeBSD Journal • January/February/March 2025

January/February/March 2025

	 99	 FreeBSD Release Engineering:
		 A New Sheriff is in Town

	 By Colin Percival

	 14	 �GhostBSD:
		 From Usability to Struggle to Renewal

	 By Eric Turgeon

	 18	 �BSD Now and Then
	 By Benedict Reuschling

	 26	 �Character Device Driver Tutorial (Part 3)
	 By John Baldwin

	 3	 Foundation Letter
	 By John Baldwin

	 5	 We Get Letters
	 By Michael W. Lucas

	 38	 Embedded FreeBSD: Learning to Walk—
		 Interfacing to the GPIO System

	 By Christopher R. Bowman

	 42	 Adventures in TCP/IP:
		 The Handling of SYN Segments in FreeBSD	

	 By Randall Stewart and Michael Tüxen

	 47	 Conference Report: FreeBSD Fall Summit
	 By Alice Sowerby

	 48	 Conference Report: FOSDEM 2025
	 By Tom Jones

	 51	 Events Calendar
	 By Anne Dickison

Topic: Downstreams

Mister Letters Answerer,

Lots of people have built stuff on top of FreeBSD, bundled
it up, and made it something you can install. I have an
idea for something like that. What do you think?

	 —�Gonna Bring My Ideas to Life

Dear GBMItL,
Interesting idea. I bet you’re still young enough to remember hope.
When I built my first Unix desktop running FreeBSD 2.0 whatever I thought I would mas-

ter this operating system. It had source code, and I could read C! I sincerely believed that a
meticulous line-by-line assessment of the operating system’s innards would grant me a skill
level unknown to anyone except those anonymous faceless gurus generously volunteering
their services on the freebsd-questions mailing list.

Like you, I had not yet learned to meticulously assess randomly appearing but
tasty-smelling enticements for treachery.

I’ve written about my exploits with the
FTP source code elsewhere in this column
and see no need to taint your soul with a
second retelling, even though extensive
therapy and microdosing thrift store
Shirley McClain “reveal your past life” audio
cassettes have exposed further details of
that odyssey. You learn that I once used
a script to identify which FTP code called
which function, order the source files as
such, and send the result to my employer’s
industrial-scale printer only to discover
several thousand pages later that the code
was recursive would serve nicely to dispel
any illusion you might suffer from that I
possess any expertise whatsoever, but it would not further illuminate you on the subject of
recursion or downstreams or, indeed, hope. It would suggest that experience is what you get
when your employer makes you buy a new toner cartridge.

It also did me the favor of ablating another layer off my already-stubby hope.
I’ve also mentioned FWTK in this very column—my fourth, if I recall correctly. Let me

check my copy of available-at-sketchy-and-dubious-retail-outlets-near-you Dear Abyss: The

1 of 3

Like you, I had not yet
learned to meticulously
assess randomly appearing
but tasty-smelling enticements
for treachery.

5FreeBSD Journal • January/February/March 2025

by Michael W Lucas

FreeBSD Journal Letters Column, Years 1-6 to verify—yes, the fourth. But I didn’t talk much
about it.

FWTK. The Fire Wall Tool Kit. Yes, Fire Wall. In the 1990s we had not yet invented
compound nouns. Firewalls cost tens of thousands of dollars, but FWTK let you install
proxies for HTTP and SMTP and more on a cheap Unix box with two network cards. All
connections from inside your organization terminated on the FWTK box, which would go
fetch the requested resources and hand them back to you. It supported all the modern
protocols, like HTTP 1.0 and Gopher, and, through the plug interface, your ISP’s Usenet
server. What else did you need? It did the job reliably.

The license forbade commercial use. You
couldn’t resell FWTK.

But you could independently consult to
install and maintain FWTK.

I was an independent consultant, wan-
dering from company to company with my
laptop and belled hat, fixing networks by
application of undying principles like “use a
crossover cable to connect hubs” and “PCs
choked by airborne filaments fiberglass in-
sulation will overheat and catch fire because,
you know, insulation.” The age of script kid-
dies had just begun and a whole bunch of
local legal firms wanted one of those fan-
cy firewall thingies. Legal firms seemed like
great clients: someone who charges $250/
hour doesn’t flinch when a consultant
charges half that. You’re only claiming to be
half as worthwhile as they are, after all.

Installing FWTK was not hard. You downloaded the source code. You compiled it. You
stuck the binaries in /usr/local/bin. A couple of config files later and boom—you had a fire-
wall comparable to the big expensive ones, and best of all, the customer’s money went into
your pocket.

FreeBSD’s FWTK port made the process a doddle, but was I satisfied? No, I was not.
Because, you see, I had the source code. Source code makes you ambitious. Source code
makes you think you can do anything. The world is stuffed with people who discovered
they could read the source code and suddenly thought they could do anything, like
innovate Internet payments, reinvent automobile drivetrains, build actual 1950s-style rocket
ships, or reconstruct government without understanding anything about any of these.
They sometimes make fortunes on the way but inevitably fail in vituperious disgrace and
vitriolated shame, because being smart enough to read source code has absolutely nothing
to do with competence or being a worthy human being.

I thought I could make things better. Ah, hope, such sweet toxicity!
If I could build my own FreeBSD that already included FWTK and the appropriate

configuration files, perhaps even with those files in pre-initialized RCS version control, I
could cut the installation time down from four hours to one. Just think of what I could do
with those extra three hours! I could… search desperately for another client who needed

2 of 3

Firewalls cost tens of
thousands of dollars,
but FWTK let you install
proxies for HTTP and SMTP
and more on a cheap Unix box
with two network cards.

6FreeBSD Journal • January/February/March 2025

an FWTK install, that’s what I could do. Never mind that the entire point of hiring a pricey
consultant is that the client gets to see them sweating for their benefit.

All I had to do was slam the source code into /usr/src/contrib, edit a Makefile and boom—
when I built the operating system it would build the port. (We also didn’t have freebsd-up-
date(8) in those days. Every security patch meant building the affected components from
source. FreeBSD didn’t have the Open Group UNIX™ certification, but it was unquestion-
ably chest-thumping Real Unix.

Like everything involved in the hideous
nerd sport of Computer Touching, it failed.

I copied the error messages into Stack
Exchange—no, wait, we didn’t have such
websites then. The mighty search engines of
the 1990s were primarily designed for que-
rying by fetish. The FreeBSD website had a
search engine, however, and the mailing list
archives were indexed. I learned, I fixed my
errors, and I created new errors. Not excit-
ing errors. Or useful errors. Just errors, to be
churned through and overcome and used to
create more errors.

But once I integrated it, I would be able
to run my own release, burn it to CD, and
have a fully patched, installable firewall.
Never mind that FreeBSD didn’t yet have
the release(7) man page. The mailing list
archives had notes on how it was done!

I spent weeks of my free time on that project, where “free” was defined as “stolen from
family, doing dishes, and bathing.”

Keep in mind that I was only trying to integrate contributed software. I wasn’t doing
anything like, say, those HardenedBSD maniacs trying to change core kernel code while
simultaneously maintaining synchronization with FreeBSD itself. On the other hand,
HardenedBSD has the “advantage” of using git rather than CVS. (Making people believe
that software forks are sensible, maintainable, or sustainable might be git’s greatest crime,
but anyway.)

I kept at it even after I ran out of law firms that needed a firewall. I wasn’t going to let a
stupid chunk of computer code defeat me. After all, if a guy like the Jordan Hubbard—who
had notoriously read the wall(1) man page, thought “It can’t work like that,” and promptly
sent a message to every single Internet user in the entire world—could do it, I surely could!

I failed.
Here’s the difference between Jordan and me. He’s willing, even eager, to fail at scale. In

front of literally everyone.
Jordan, Rod Grimes, Nate Williams, Mike Smith, and all those folks put their work into

the world and attracted other people to their vision. They were smart enough to know that
the source code didn’t grant them phenomenal cosmic powers but instead kept at it out of
pigheadedness and the will to create something cool and useful, unlike my pigheadedness
and greed.

3 of 4

I spent weeks of my free time
on that project, where
“free” was defined as “stolen
from family, doing dishes,
and bathing.”

7FreeBSD Journal • January/February/March 2025

https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

Occasionally, they even documented that vision.
And here we are.
So, should you make a downstream? Do you have a vision? Do you have an infinite capac-

ity for overcoming your own mistakes? Are you willing to tell the whole world what you have
done? Then go volunteer for a worthy cause helping those less fortunate than you, because
that’s how you make changes in the world!

Yes, that involves leaving your keyboard. Sorry.
Fine. Build a downstream. See if I care. Don’t repeat my mistakes, though. Go make your

own. It’s the best way to learn!
Also: whenever a legal firm invites you to work for them, check with other contractors

they’ve used first. Fighting a law firm over unpaid invoices is difficult. After all, they have all
the lawyers.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS is the author of Absolute FreeBSD, Run Your Own Mail Server, and
too many other books. He probably needs his medication adjusted. Again. Learn more at
https://mwl.io.

Books that will
 help you.

While we appreciate Mr Lucas’ unique
contributions to the Journal, we do feel his
specific talents are not being fully utilized. Please
buy his books, his hours, autographed photos,
whatever, so that he is otherwise engaged.

— John Baldwin
FreeBSD Journal Editorial Board Chair

“
”

Or not.

https://mwl.io

4 of 4

8FreeBSD Journal • January/February/March 2025

mailto:letters@freebsdjournal.org
https://mwl.io
https://mwl.io
https://mwl.io

9FreeBSD Journal • January/February/March 2025

On November 17, 2023, Glen Barber retired from the position of
FreeBSD Release Engineering Lead after a decade of managing
FreeBSD releases, and with the endorsement of the FreeBSD

Core Team, I took over the role.

Continuity, and
Glen did an excellent job as a release engineer, so when I took over

my priority was to provide continuity: To do things, as much as possible, the
same way as he had done previously. To this end I was aided by three years of
experience as Release Engineering Deputy Lead: While I had only managed
one release before (FreeBSD 13.2-RELEASE, after Glen was hospitalized
with pneumonia), I had watched how Glen did things enough to have a general sense of
how to continue.

But that is not to say that I made no changes—if that were the case, this would be a
very short article. My first goal was to streamline the release process to avoid a repeat of
FreeBSD 13.2, which arrived almost a month late after needing six release candidates before
all the issues were ironed out enough to proceed to the release. To that end, I set out some
ground rules for release cycles:

•	A Release Candidate should be exactly that—a candidate for a release—and so by the
time we get to RC1 there should be no further known release-blocking issues. The goal
is to build RC1, have a week of testing (or a bit under a week given the time for builds to
complete), and then build the final RELEASE images. If problems are found in RC1 we
can do a second or third release candidate—but this should only happen with new prob-
lems; any previously-known problems should have already been ironed out before RC1.

•	While developers often have code that they “need” to get into the next release, I’m not
going to hold up the release process if they’re late—it’s simply not fair to all the other
developers who got their code into the tree on time and want to get it into the hands of
users. The tree is open for anyone to merge patches until -BETA1 (we used to “freeze”
the stable branch, but that hasn’t happened for many years now) and between BETA1
and BETA2 I’m generally willing to accept changes that aren’t particularly large or dan-
gerous, but between BETA2 and BETA3 it becomes a matter of “are we sure this patch
won’t cause any new problems” and between BETA3 and RC1 the bar for patches ris-
es to “… and does it fix an actual problem which users are running into” since if a prob-
lem is purely theoretical it’s not worth the risk that something might be wrong with the
patch. After RC1, of course, only the most critical patches will be accepted—and ideally

BY COLIN PERCIVAL

FreeBSD Release Engineering:

A New Sheriff
is in Town

1 of 5

10FreeBSD Journal • January/February/March 2025

no patches—since any changes beyond that point will require adding another Release
Candidate and pushing back the release date.

•	If new features arrive close to the release—say, after we enter “code slush”, two weeks
before BETA1—and problems are found that can’t be immediately and trivially fixed, I
will remove those features from the release. Part of the reason that past release sched-
ules often dragged on is that features arrived late and then needed multiple rounds of
bug fixes before the release could ship; as with late-arriving code, it’s not fair to every-
one else if one developer is delaying the release because they merged buggy code at
the last minute.

I also asked FreeBSD developers—with inconsistent success, although it does seem to
be gradually improving—to be far more proactive in
alerting the release engineering team to anything
they intended to get into the upcoming release; and
once I knew about issues, I became more proactive in
emailing developers to ask for status updates. More
than once I had replies along the lines of “I didn’t re-
alize BETA2 was already out; I’ll get that code merged
ASAP”—FreeBSD is a volunteer project so it’s entirely
reasonable that other things in developers’ lives dis-
tract them from working on FreeBSD, but the last
thing we want to do is have a release schedule slip just
because someone lost track of time.

Release Scheduling
Once it became clear that the FreeBSD project could do releases in a predictable

amount of time, I turned my mind towards scheduling. Three BETA images and one RC col-
lectively take a month, and we have a two-week “code slush” before BETA1 and a two-week
warning (aka “hurry and get your code merged”) before that. That adds up to 2 months if
everything goes perfectly; but since the schedule will sometimes slip no matter how hard
we try (if nothing else, because we’ll always hold the release for last-minute security fixes) we
need a third month to allow for slack in the schedule—and to allow the release engineering
team a bit of time between releases.

Knowing that we can effectively do one release per 3 months makes a schedule obvious:
Do one release per calendar quarter. If we start with the 2 week “warning” and 2-week “code
slush” in the first month of the quarter and have BETAs and RC1 weekly through the second
month of the quarter, we end up with the RELEASE announcement landing around the start
of the third month. If the release slips by a few weeks, we still finish before the end of the
third month. This gives us a target schedule for future releases—we’re never going to ship a
release that isn’t ready, but knowing what we’re aiming for is an essential starting point:

•	BETA1 - 28 days: Warning to developers.
•	BETA1 - 14 days: Code slush starts.
•	First Friday in second month of the quarter: BETA1.
•	BETA1 + 7 days: BETA2.
•	BETA1 + 14 days: BETA3.
•	BETA1 + 21 days: RC1.
•	BETA1 + 28 days: RELEASE builds start.

2 of 5

Once I knew about issues,
I became more proactive
in emailing developers
to ask for status updates.

11FreeBSD Journal • January/February/March 2025

•	BETA1 + 32 days: RELEASE announcement goes out.
•	BETA1 + 39 days: The release branch is handed over to the security team.
The one exception to this is .0 releases: These start with ALPHA builds before the sta-

ble branch is created, and there’s simply no way to fit the entire process for a .0 release into
three months; so, in the interest of keeping the schedule otherwise aligned with calendar
quarters, I decided we should set aside six months—two calendar quarters—for those re-
leases. The exact schedule of when things will happen within those six months, I haven’t de-
cided yet—and since I’ve never done a .0 release before, will probably get wrong for 15.0—
but I do hope to eventually establish a repeatable schedule for these as well.

Once the amount of time for each release was determined, all that remained was to set
the order in which releases would occur and decide
how often to do .0 releases. The first question was eas-
ily answered: There’s no point doing a release 3 months
after a release from the same stable branch, so we al-
ternate between stable branches, i.e. 14.0, 13.3, 14.1,
13.4, 14.2, et cetera. The answer to the second question
came from many discussions amongst FreeBSD de-
velopers over the years: We’d like to have a new ma-
jor version every 2 years. In the past, it has worked out
very well to have the .0 release cycle start soon after a
FreeBSD developer summit—that ensures a large num-
ber of developers are on hand to discuss any features
that we want to have completed in time for the release—and since the largest developer
summit has typically been at BSDCan in May or June, it makes sense to schedule the .0 re-
leases for the second half of the year, with the release landing around November or Decem-
ber of every odd year.

This gives us a schedule for when each FreeBSD release will take place:
•	June 2025: FreeBSD 14.3
•	(September 2025: No release this quarter; working on 15.0)
•	December 2025: FreeBSD 15.0
•	March 2026: FreeBSD 14.4
•	June 2026: FreeBSD 15.1
•	September 2026: FreeBSD 14.5
•	December 2026: FreeBSD 15.2
•	March 2027: FreeBSD 14.6
•	June 2027: FreeBSD 15.3
•	(September 2027: No release; working on 16.0)
•	December 2027: FreeBSD 16.0

Support Periods
Starting with FreeBSD 11.0-RELEASE, FreeBSD’s policy for supporting releases has been

that minor releases are supported for three months past the date of the next release from
the same stable branch, while stable branches are supported for five years from the date of
the .0 release.

The first half of that—support durations for minor releases—fits neatly with the new
quarterly release schedule: Just as we have a new release at the end of nearly every quarter,

3 of 5

 We’d like to have
a new major version
every 2 years.

12FreeBSD Journal • January/February/March 2025

a release reaches its end-of-life at the end of nearly every quarter. Moreover, since releases
now always occur in the third month of each quarter, the policy of “three months of overlap
between minor releases” simply translates to “one quarter of overlap.”

Where the new release schedule doesn’t fit with the established support timelines so
well is the support period for stable versions: Doing a new .0 release (and thus a new stable
branch) every 2 years and supporting each stable branch for 5 years would result in 3 stable
branches being supported at the same time—which experience has taught us isn’t some-
thing we can do very well as a project.

Consequentially, to better align support timelines with the release schedule the Core
team, security team, and ports management team have approved adjusting the support
timelines for stable branches: Starting from 15.x, sta-
ble branches will be supported for 4 years instead of 5.
This may be less of a change than it sounds: In practice
stable branches were never supported very well in their
fifth year.

With this change, there are always two supported
stable branches, aside from a window of a few weeks
every second year where there are three supported
branches when (N+2).0 is released shortly before the
N.x branch reaches its end-of-life.

Legacy Releases
For many years parts of the FreeBSD website—

sometimes commented out—have referred to “legacy”
releases, but as far as I could find there was never any clear definition of what this meant.
During Glen’s time as a release engineer, the concept mostly fell into disuse, as he felt that
calling a release “legacy” gave users a misleadingly poor sense of its quality, when in fact we
aim for the same quality from all FreeBSD releases.

I decided to bring this concept back to help users (especially new users) decide which re-
lease they should be installing. To this end, I have a definition:

A “legacy” release is a release that has not yet reached its End of Life, but which
the Release Engineering team recommends against deploying for new systems.

In other words, it exists for the benefit of users who already have FreeBSD installed and
don’t want to upgrade to the latest release; but if you’re installing a new system, you should
probably be reaching for a newer release.

In general, once FreeBSD N.1 is released, the (N-1).x stable branch will be considered “leg-
acy”, and any time a new minor version is released from a stable branch, the previous ver-
sion from that branch is immediately “legacy”. Or put another way: Normally everything ex-
cept the most recent release from the latest stable branch is “legacy”, but immediately after
a new stable branch launches with a .0 release the most recent release from the previous
stable branch will remain “non-legacy”.

Ultimately FreeBSD users can use whatever versions they like, and this is in no way in-
tended to limit FreeBSD developers’ decisions about merging features and bug fixes; it’s
purely a matter of helping new and inexperienced users pick the right version to download.

4 of 5

Starting from 15.x,
stable branches will be
supported for 4 years
instead of 5.

13FreeBSD Journal • January/February/March 2025

What’s Next?
During 2024 I’ve made the changes mentioned above and managed the 13.3, 14.1, 13.4,

and 14.2 releases. What comes next?
Well, for a start we have three releases scheduled for 2025: 13.5, 14.3, and 15.0. The mi-

nor releases I’ve done so far have each taken 50-100 hours of my time (13.x at the low end
of the range and 14.x at the high end, since more new code lands in 14.x) and I’ve been
very lucky to have sponsorship from Amazon for my FreeBSD work (both for maintaining
FreeBSD specifically on the EC2 platform and for general release engineering work)—with-
out that, FreeBSD 14.2 would have shipped without some late-landing features simply be-
cause it wouldn’t have been possible for issues to get fixed in time. FreeBSD 15.0, of course,
will be a new major version—something I’ve never done before—and I’m sure it will take
considerably more release engineering time.

But beyond the “routine” process of pushing out weekly snapshots and (mostly) quarterly
releases, there are two big items on the horizon: First, FreeBSD 15.0 should ship with a pack-
aged-based system—pkgbase has been “coming soon” for far too long already—and sec-
ond, the FreeBSD Foundation, with funding from the Sovereign Tech Agency, is funding a
project to modernize the FreeBSD build process (in particular, to make it possible to build as
much as possible without root privileges). Both items will involve significant changes in the
release engineering process, but neither of them should affect our goal of producing stable
and well-tested releases on a predictable schedule.

COLIN PERCIVAL is the FreeBSD Release Engineering Lead and maintainer of the
FreeBSD/EC2 platform, for which he was recognized as an “AWS Hero” in 2019. His day job
is as the founder and primary developer of Tarsnap, an online backup service.

5 of 5

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number
of applications, off ers powerful solutions, and cutting edge
features. The best part? It’s FREE of charge and comes with
full source code.
Did you know that working with a mature, open source
project is an excellent way to gain new skills, network
with other professionals, and diff erentiate yourself in a
competitive job market? Don’t miss this opportunity to work
with a diverse and committed community bringing about a
better world powered by FreeBSD.

The FreeBSD Community is proudly supported by

The FreeBSD Project is looking for

• Programmers • Testers

• Researchers • Tech writers

• Anyone who wants to get involved

Find out more by

Checking out our website
freebsd.org/projects/newbies.html

Downloading the Software
freebsd.org/where.html

We’re a welcoming community looking
for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don’t forget to check out the latest
grant opportunities at
freebsdfoundation.org

Help Create the Future.
Join the FreeBSD Project!

https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
https://freebsdfoundation.org

14FreeBSD Journal • January/February/March 2025

This article isn’t meant to be technical. Instead, it offers a high-level view of what hap-
pened through the years with GhostBSD, where the project stands today, and where
we want to take it next. As you may know, GhostBSD is a user-friendly desktop BSD

operating system built with FreeBSD. Its mission is to deliver a simple, stable, and accessible
desktop experience for users who want FreeBSD’s power without the complexity of manual
setup. I started this journey as a non-technical user. I dreamed of a BSD that anyone could
use.

The Beginning of GhostBSD
In 2007, I read Eric S. Raymond’s How To Become A Hacker. It pointed to BSD Unix as a

place for aspiring contributors to learn and grow. It sparked my curiosity about BSD, which
led me to explore FreeBSD. At that time, I was using Ubuntu, and the question emerged:
could FreeBSD become a desktop OS for non-technical users like Ubuntu? At that time,
I was a non-technical user myself. I just liked Ubuntu’s ease and wondered why FreeBSD
couldn’t be the same. In 2008, that question ignited
my quest to create GhostBSD, and I started to learn
everything I needed to create the project to make my
vision of FreeBSD as approachable as Ubuntu.

It took me almost two years to figure everything
out, experimenting with tools like FreeSBIE to craft a
live CD and finding some code to build with GNOME.
FreeSBIE was tricky for a beginner to wrangle. As a Ca-
nadian French speaker, the FreeBSD Handbook was
helpful, but my English was limited, and I forced my-
self to learn it. I dug through forums and docs, piec-
ing together GNOME builds, often breaking thighs
more than making things work. Fun fact: the name
“GhostBSD” comes from my wife. Back then, she was my girlfriend. She suggested it, and I
went with it. We got married in September 2009, just as the project took shape. In Novem-
ber 2009, GhostBSD 1.0 Beta launched as a live CD running GNOME on FreeBSD 8.0. It was
rough and full of issues, but it laid the foundation for what GhostBSD has become. Feed-
back from the FreeBSD community fueled the early progress. Along the way, some peo-
ple joined to help and teach me about source control versioning and other things. Folks like
Ovidiu Angelescu nudged me toward SVN with his shell scripting know-how. I did learn a lot.
We use Git now, but back then, it was all SVN.

BY ERIC TURGEON

1 of 4

GhostBSD: From Usability
to Struggle and Renewal

I started this journey as
a non-technical user. I
dreamed of a BSD that
anyone could use.

15FreeBSD Journal • January/February/March 2025

The Early Years
The first release was GhostBSD 1.0 Beta, which gave users a taste of FreeBSD with

GNOME. It was a shaky start but a proof of concept. By 2010, version 1.5 added a text-based
installer using pc-sysinstall from PC-BSD, making setup easier. Those early years involved
learning FreeBSD in and out, shell scripting, programming, and from people like Ovidiu An-
gelescu. I leaned on Ovidiu for shell scripting tips. In 2011, version 2.5 introduced the graph-
ical GBI installer, built on the same pc-sysinstall backend. That backend remains a core
component today. Its reliability meant I didn’t have to reinvent the wheel. It was a lesson in
sticking with what works.

The groundwork for NetworkMgr started around 2012 as a GUI tool to manage Ethernet
and Wi-Fi connections. It was a step toward usability, inspired by Linux’s NetworkManager.
By 2015, I stripped it from ghostbsd-build to refine it
separately as its tool. A significant shift hit in 2013 with
version 3.5. GNOME 3’s release was clunky and unsta-
ble on FreeBSD. It was laggy and resource-hogging.
This situation clashed with GhostBSD’s goals. We tried
other desktop environments. We created multiple ISOs
with different DEs like LXDE, XFCE, and Openbox, and
the meaning of GhostBSD, “GNOME hosted on BSD”
faced an identity crisis. When MATE, a fork of GNOME
2, emerged, it saved the day. We did switch to MATE
for its simplicity and familiarity. It felt like GNOME 2’s
cozy and at home, running lighter on FreeBSD. At that
time, I was unsure what to do with the other desktops
when some people just disappeared from the project.
I started dropping all the other desktops, but XFCE remained an option. MATE became the
flagship, reshaping GhostBSD’s focus on usability over Flash.

System Base Shifts
I started working on Update Station in 2014 to bring GUI updates to GhostBSD users. I

thought it was later, but after digging through GitHub, I found that it began taking shape
around that time. At first, GhostBSD relied on FreeBSD’s release source, tarballs, and official
packages. At one point, we needed to start delivering updates for tools like NetworkMgr,
which pushed us to build our package repositories. Our custom packages often clashed
with FreeBSD version upgrades, creating friction and demanding a better solution. Also,
freebsd-update was hard to automate for Update Station. Freebsd-update didn’t fit our
GUI-first goal. We started to look at what TrueOS was doing. I noticed the use of PkgBase,
and it was intriguing. Their pkg-driven OS updates promised GUI freedom.

In 2018, GhostBSD 18.10 switched to TrueOS as its base. TrueOS offered PkgBase, letting
us update the OS with the pkg tool, and we ditched freebsd-update. It also brought Open-
RC, a modern service manager perfect for building a GUI to manage services, but that nev-
er happened. The shift to TrueOS allowed Update Station to upgrade software and OS from
a graphical interface. It was a game-changer for us and allowed our users to upgrade the OS
with Update Station. Later, TrueOS introduced OS ports, allowing us to build OS packages
from the ports tree with poudriere and giving us finer control over updates.

2 of 4

MATE became the flagship,
reshaping GhostBSD’s
focus on usability over
Flash.

16FreeBSD Journal • January/February/March 2025

Bumps in the Road
TrueOS shut down in 2020, putting pressure on us to maintain everything we’d gained.

I initially wanted to keep OpenRC, but maintaining all services across ghostbsd-ports and
ghostbsd-src became a solo struggle. Around that time, I was alone, primarily maintaining it,
which was draining my time to improve and manage GhostBSD. In 2022, I dropped OpenRC
for FreeBSD’s simpler but reliable RC system. It meant less to juggle and more focus for-
ward. By 2023, maintaining OS ports grew too taxing. In 2024, I decided to shift building our
OS packages from FreeBSD-maintained PkgBase within SRC, streamlining the maintenance
load and refocusing on user experience.

In January this year, I realized that building GhostBSD from STABLE was too much for our
small team. After discussing it with the other contrib-
utors, I decided to switch back to FreeBSD RELEASE.
Yes, we are losing early driver access, but we save time
debugging STABLE changes, giving us the stability to
build on. I am not saying that STABLE is always broken,
but sometimes, some changes create problems.

Over the years, I’ve tried to manage GhostBSD to
the best of my knowledge through critical choices that
added difficulties but also brought gains for what was
missing in GhostBSD. PkgBase and OS ports gave OS
updates from a graphical user interface, but OpenRC
piled on work. However, it also meant adding more to
maintain than the project could handle. All the latest
changes mark the return to GhostBSD’s roots and a renewal of focusing on usability instead
of over-complicating the maintenance of GhostBSD. It was a hard lesson to keep it simple.

Where GhostBSD Stands Presently
As I write this, we’ve just released GhostBSD 25.01-R14.2p1. It marks a shift from FreeBSD

STABLE to FreeBSD RELEASE, using 14.2-RELEASE-p1 for more excellent stability. The new
versioning of GhostBSD breaks down as follows: 25 for 2025, 01 for the GhostBSD patch, R
for RELEASE, 14.2 for the FreeBSD version, and p1 for the FreeBSD patch. It aims to clarify
releases for users. No more guessing what’s what. With all the recent changes, I feel we’re in
a good place to focus on improving our tools.

Some of those tools are:
•	NetworkMgr: A GUI software for Ethernet and Wi-Fi, modeled after Linux’s Network-

Manager. Simple clicks over CLI chaos.
•	Update Station: A GUI software for software and OS upgrades that creates a Boot En-

vironment backup before upgrading. Safety first!
•	Software Station: A GUI software to install software that leverages pkg to install soft-

ware. The point, click, done.
•	ghostbsd-build: Used to build GhostBSD, including Joe Maloney’s ZFS reroot hack for a

read-write ZFS pool live session in RAM. Blazing fast for demos and installations.
•	Backup Station: Added in September 2022 by Mike Jurbala, a GUI software that uses

pybectl, an in-house Python module for interfacing with bectl, to manage Boot Envi-
ronments. System snapshots made easy.

3 of 4

 I feel we’re in a
good place to focus on
improving our tools.

17FreeBSD Journal • January/February/March 2025

•	GBI and pc-sysinstall: GhostBSD’s GUI installer recently dropped UFS in the UI to
leverage ZFS’s strengths. ZFS’s power shines over older ways.

What’s Next for GhostBSD Future
For 2025, I plan to document some SOPs to make contributing to GhostBSD easier for

everyone, hoping that new contributors won’t need too much mentorship. I’ll deploy a fast-
er build server at my house for quicker package builds and as I write this, I am waiting for
the PDU to arrive. I also want to finish an OEM-friendly installer to widen our reach, rework
Update Station to install updates at boot, and improve NetworkMgr’s integration with devd
for stability. If possible, add support to create a home
directory dataset with the option to encrypt with GBI.
FreeBSD’s upcoming AC and AX Wi-Fi support in 2025
or 2026 promises better connectivity speed, and I’m
excited about that. Our laptops will love it.

I can’t speak for other contributors, but we have a
long list of tasks on GitHub. We do have a roadmap
that can be found under the Development tab on
GhostBSD.org. Check it out if you’re curious.

In the long term, we are waiting for more do-
nations to come in so we can buy an ARM(Am-
pere) server to start building GhostBSD arm64.
In the meantime, GhostBSD still aims to be a fully
GUI-driven OS that leverages ZFS, which is perfect
for non-technical users who can benefit from what
FreeBSD offers. We have conversations on creating components for a desktop to slowly
replace MATE that align better with FreeBSD/GhostBSD, like a file manager that leverages
ZFS. However, it’s still just discussions. Nothing solid for the moment.

Conclusion
GhostBSD has been a journey with a chain of choices, from a 2009 live CD to what it has

become today. It was started by a non-technical user dream and evolved into a community
project. Each step, like custom packages, TrueOS, ZFS reroot live session, and PkgBase tack-
led a challenge. The past taught me resilience, the present offers stability, and the future in-
vites you to help shape it. If you are interested in getting involved, please visit GhostBSD.org.
You’ll find a spot.

ERIC TURGEON is the founder and leader of GhostBSD. He’s also a FreeBSD ports com-
mitter, focusing on maintaining MATE ports and the NetworkMgr port. Based in Canada,
Eric has been passionate about BSD since the late 2000s. He balances his time between
GhostBSD, FreeBSD contributions, work, and personal life. His drive comes from a desire to
make BSD accessible, and he welcomes anyone to join the GhostBSD community.

4 of 4

GhostBSD has been
a journey with a chain
of choices, from a 2009
live CD to what it has
become today.

https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

18FreeBSD Journal • January/February/March 2025

The BSD Now podcast recently celebrated its 600th episode, which seems like a per-
fect opportunity to give FreeBSD Journal readers a behind-the-scenes look at this
long-running BSD show.

Humble Beginnings
BSD Now started in 2013 as a podcast hosted by Allan Jude and Kris Moore. I was a regu-

lar listener back then, excited to hear the news in the BSD space. That space quickly became
“the place to B..SD” as Kris so famously quipped. The show offered both news and tutorials,
the latter of which Allan recorded separately. He once
told me that this was difficult because you had to both
type and explain what you were doing. Typos or oth-
er unexpected computer glitches meant either undo-
ing the changes and cutting the recording or starting
over altogether. From the beginning, the show has of-
fered a feedback channel via email for the submission
of ideas, show content, or discussions about anything
in the BSD space, and the feedback is read at the end
of the episodes. Often, people use it to ask questions
about installing or using BSD. Sometimes, Allan has of-
fered his vast knowledge of ZFS to help users build their NAS at home or understand diffi-
cult-to-understand concepts.

Kris also offered his perspective from the PC-BSD side and everything about modern
Unix desktops. This combination contained all the good bits I was looking for as a BSD user.
Since you only had to wait a week for the next dose of BSD Now, it meant that my BSD bat-
teries, which always became supercharged after a conference, would not deplete so fast.
This went on for several years and this brief description of the early days of the show does
not do it justice—and Allan and Kris could tell many more stories from that time!

I vividly remember when BSD Now became something more for me than just a pod-
cast I listened to. We were at FOSDEM and had gone as a group to one of the many good
restaurants in Brussels. As we sat at a long table waiting for dinner to arrive, Allan men-
tioned that Kris Moore intended to step down from the podcast as his life was getting bus-
ier. They were looking for a replacement moderator. Hearing this, I innocently asked what
would be involved in that. I sometimes cannot keep my mouth shut and at that point had
not even considered stepping in. Allan explained the process briefly, how they would meet

BY BENEDICT REUSCHLING

1 of 7

BSD Now Now
	 and ThenThen

From the beginning,
the show has offered a
feedback channel via email.

19FreeBSD Journal • January/February/March 2025

for an hour each week for recordings, and some of the technical logistics behind the show.
This all sounded exciting, and as I was always willing to help when I could, I said that I’d be
willing to join. Allan liked that and we continued our discussion on other channels (also: din-
ner had arrived).

The change was not announced until we had done a recording in a separate room at the
AsiaBSDCon venue on March 16, 2017. This handover episode 185 gave Kris a chance to say
goodbye and me to introduce myself. These early episodes proved to be a bit bumpy, but
eventually, I got the hang of it. It was good to practice my English every week and keep up
to date on the BSD space at the same time.

Becoming Independent
BSD Now was running as part of the Jupiter Broadcasting podcast network. It meant

some cross-pollination between the shows, as listeners would likely also taste the other
shows available under the same umbrella. Also, Allan has been a popular figure since his
TechSNAP days, which probably boosted the listener-
ship. The network also provided a lot of logistics like
post-production. For them, it was just another episode
to cut into shape and publish in time, which allowed us
to focus entirely on the recording and content.

The podcasting world has seen some mergers and
takeovers. In the fall of 2018, it was announced that
Linux Academy would merge with Jupiter Broadcast-
ing. In turn, a company named A Cloud Guru bought
Linux Academy. With the typical restructuring of op-
erations these mergers often encompass, we would
still run the show under the new company name. Allan
was well connected to the original Jupiter Broadcasting people like Chris Fisher and Bryan
Lunduke who launched the network in 2008. In episode 347 (April 23, 2020), we announced
that we would become independent of Jupiter Broadcasting. (Chris Fisher would make Ju-
piter Broadcasting an independent operation again in August 2020). This involved changes,
and much like becoming a self-publishing author, it meant taking care of a lot of manageri-
al items around the show. Lucky for us, we retained the talent of Angela Fisher for behind-
the-scenes work like posting the finished episodes to the many podcast channels. And we
still managed to put out weekly episodes like before. JT, our producer started doing produc-
tion at about episode 100. He had been the producer and helped with production work of
the Linux action show (LAS) since 2013. Chris Fisher decided to take the show in a different
direction and didn’t need his assistance in that role anymore. At about the same time Allan
was looking for a replacement for the original producer TJ. Due to JT’s involvement in devel-
opment of the lumina desktop with Ken Moore and working on PC-BSD, Allan had asked
him if he was interested in replacing TJ. That’s how he became our new producer and has
been ever since. He would prove to be an invaluable help in doing the hour-long post-pro-
duction editing, and that allowed Allan and me to spend our regular hour per episode with-
out extra overhead. While we never relied on click-through rates or other viewer-dependent
marketing to finance the show, it was still necessary to compensate people for their efforts.
For the longest time, Colin Percival’s Tarsnap has been sponsoring the show, and we never
cease to praise the backup service he runs. This regular sponsorship allows us to continue

2 of 7

BSD Now was running
as part of the Jupiter
Broadcasting podcast
network.

20FreeBSD Journal • January/February/March 2025

our little podcast as an independent operation. We have always been thankful for his con-
tinued and generous sponsorship!

How the Sausage Is Made
An episode starts with the two moderators agreeing on a recording date. Once we’ve

found a convenient time, we let our producer, JT, know about it. He then prepares the show
notes scaffolding in a shared document. We all contribute stories to BSD Now and send
them to the producer. Sources vary from stories we find on tech news sites, forums, individ-
ual blog posts, submissions by listeners via email, and the usual suspects. The latter are sites
that regularly put out content we cover (in the length that we prefer) and that are either
BSD-focused or have a history of independently cover-
ing the BSDs well.

JT then tries to fit it into a show episode based
on some criteria: newsworthiness, actuality (break-
ing news), long and shorter items, and who is record-
ing next. This last bit is important because some of us
moderators are more versed in certain topics (except
for me…maybe I’m there to keep things balanced!)
and can provide extra detail during that piece in the
show. Longer news items with current events tend
to become headlines, while shorter ones either get a
spot in the news roundup or even the beastie bits. It all needs careful curation to fit into the
45-minute time slot. Longer recordings need cutting when a story tends to overgrow the
episode. To prevent that, we aim for the 45-minute mark. Interviews and special episodes go
somewhat longer.

When an episode stub is filled with items and posted to our ever-growing show doc
dumping ground, I fill out some metadata. This includes the recording date, tags based on
the news items in the show, and the title of course. Yes, you can blame me for all the nonsen-
sical episode titles that make you roll your eyes when an episode pops up in your podcatch-
er. Back in the early days of the show, there used to be a rule that the episode title had to be
made up of three words. Not sure where this limitation came from, but maybe marketing
had a say in it (catchy title and all). This is both a blessing and a curse: keeping the title short
ensures we don’t start with a whole sentence and short is easy to remember. On the flip side,
it’s not always easy to come up with a cool title based on the content of the show. For exam-
ple, if there were a story about NetBSD running a big ferris wheel, what would you call such
an episode? “Wheel of Fortune?”, “Big wheel NetBSD,” or perhaps “Wheeling NetBSD”? I
usually spend a bit of time inventing something. (None of my co-moderators have ever pro-
tested or even demanded I change the title before recording.)

Once all that is in place, we have our show notes ready to record an episode. Ideally, the
notes are ready in time to let everyone look at the stories and prepare. But life and circum-
stances sometimes don’t allow that, and we read a story on air for the first time. That’s not
ideal but does allow for a fresh reaction when reading the content.

On Air
Before the recording starts, we moderators agree on who will cover which items in the

show, and that lets each of us cover our favorite part. We typically take turns going through

3 of 7

Before the recording starts,
we moderators agree on
who will cover which items
in the show

21FreeBSD Journal • January/February/March 2025

the material. This has worked well as it gives the other person time to recover from a long
read and even prepare for the next article.

We moderators can see each other during the recording session and that has proven
to be invaluable. We can see if someone is finishing up their piece soon. Giving nods, hand
signals or even holding up items we’re currently discussing are all informative for the other
person. Remember, we are not sitting in the same room during recording. Also, we are not
in a professional recording studio. Even though we use the same audio equipment for re-
cording, a smooth-running show can still turn bad during a recording. Loss of Internet con-
nection, construction work outside the window, airplanes, or delivery men ringing our door-
bells during recording have all caused interruptions in the past. Luckily, these events are not
common. Our producer can fix some audio glitches during post-production, but he can’t
do magic. If things go bad, we must re-record a bit or
(worst case) a whole episode! This is tough. Since we
do all the episodes from top to bottom without stop-
ping, we can not easily insert missing pieces or recreate
the exact words we spoke. The audience would notice
those things as they would not sound natural.

Audio troubles have been a common occurrence
and sometimes we don’t realize it until listeners tell us
about it. It could have been that one of us was too si-
lent, or that the audio tracks shifted together, and we
talked over one other. Microphone settings may change
unexpectedly. I recently realized that the headphones I
had used since my first episode had died. At first, I thought the cause was a bad volume set-
ting on the other end. After testing, I found that one side went dead. I have since switched
headphones and can hear my co-moderators as clearly as if they were standing next to me.
Audio can be a tricky business!

Specials
Allan did a lot of podcasting, even before BSD Now we do as interviews with people in the

larger BSD space. We also did some recordings during conferences where we could conve-
niently drag someone into a quiet corner to ask them some questions. This is both exciting
and unpredictable as we can’t create a show notes document up-front. We do write up a
couple of questions when we are interviewing our usual recording spots, but during a con-
ference, we need to come up with them as we go along depending on the interviewee. I am
always glad that people are willing to do this. They reach a wider audience through us and
can talk about what they are working on, call for testers, and provide some background info
on how they got started with the BSDs. That is the question Allan and Kris always asked as
the first question and we keep that tradition alive.

I was intrigued by the interview Kris and Allan did with Bryan Cantrill in episode 103. I had
never heard about him, but I replayed that interview multiple times as an evergreen because
of the Unix backstories and rants. A lot of listeners shared this excitement, so it was prudent
for them to do a follow-up interview in episode 117. We had hit a nerve and looking back from
where we are now in the IT sector, it is amazing to see some parallels and histories repeating.

Other people were kind enough to be interviewed by us, offering their unique experi-
ences and expertise. Michael W. Lucas became a regular and must have been the most in-

4 of 7

Special episodes are
the ones we do as
interviews with people
in the larger BSD space.

22FreeBSD Journal • January/February/March 2025

terviewed person over the years. Not only do we cover his blog posts about his progress in
book writing, but we also love interviewing him when a new book becomes available. Mi-
chael’s interviews offer a fascinating insight into the self-publishing business. The written
and spoken word combine to each other’s benefit!

We also had guest moderators from time to time. This happened when we could foresee
that one of us needed a longer break (because life happens to everyone), so someone else
had to take over. I did at least two episodes with Dan Langille of BSDCan-fame—just one of
his many achievements. Episode 404 (BSD Now moderators not found) was super special in
that all moderators were replaced. This had to be planned in advance because we needed
to find and convince replacement moderators. Our producer, JT, managed that and seemed
to have a lot of fun producing the special.

Other special episodes are those where the counter hits a certain number. Geeky num-
bers like 386, 486, and others deserve something special. I’m a bit worried about episode
number 666 but look forward to 686. We recently talked about what we should do once we
hit 999. Maybe call it a day and announce the end of the podcast after such a long time. We
might as well keep going past the big 1k episode—the sky is the limit and it’s too early to tell.

Scheduling episodes is not always easy. Holidays, conference visits, unexpected sickness-
es, or other things happen. These days, we keep a buffer of one episode to cover for a week
of absences. For holidays like Christmas or New Year, we usually plan something special and
record that up-front. This extra work during a busy hol-
iday season is offset by the time it buys to spend our
usual recording day with friends and family.

Comings and Goings
Our lives became busy, and Allan needed a break

from weekly recording. First, we switched to record-
ing two episodes per week, giving us free time the oth-
er week. As time went on and the busyness increased
even more, we brought in Tom Jones at episode 400
(see the pattern?) as a third moderator. This meant
that both Allan and Tom had to record only once per
month, while I remained the constant element every two weeks. Tom provided his network
expertise to the show and was able to comment on these topics more than I did.

Allan did a lot of podcasting, even before BSD Now. In an interesting twist, he launched
the 2 1/2 admins podcast in his off week. All of us would not enjoy the weekly BSD news if it
had not been for Allan and his courage in trying the experiment of a BSD podcast. As the
last member of the original BSD Now moderators, he told us in 2023 that he would leave
the podcast to make time for his company Klara Systems. In episode 512 (patterns, patterns),
recorded live in front of an audience during BSDCan in June 2023, he announced this de-
cision. To keep the show going, he brought in Jason Tubnor, who had done podcasting be-
fore. Allan is still sticking around our private production channel and still offers his help and
perspective if needed. Our producer, JT, became the new mastermind behind the scenes,
both in the pre-and post-production, as well as the business side of the show. He launched
our new Patreon donation levels, put up all the past episodes, managed the website and so
much more.

Jason brings a lot of experience in both OpenBSD and FreeBSD to the show. Often, he
provides extra info on certain topics, be it security, running BSD in production, or virtualiza-

5 of 7

Allan did a lot of
podcasting,
even before BSD Now.

23FreeBSD Journal • January/February/March 2025

tion with bhyve. I look forward to chatting with either Tom or Jason before the show starts.
These catch-ups were often so informative, that we decided to record them as well for our
higher-level Patreon sponsors. This includes our current projects, insights, mini-rants, up-
coming events, and other dealings. After that, we start the official show recording as we
have done so many times before.

Audience Matters
Producing an episode every week is still an amazing achievement, and the audience ex-

pects a new episode every week. People have told us they are hopelessly behind in listen-
ing to episodes or just jump ahead a few weeks. Others send in their thoughts about pieces
we covered or follow up on a question someone posed that we could not answer. We have
had surprised blog authors thanking us for covering their online writing. For me, covering
the blogs is rewarding in that it gives us content and the blog some extra traffic it would
not otherwise get. It may also encourage them to con-
tinue blogging about BSD or Unix in general, which will
then re-appear in a future episode. Who knows, some
good collaboration may start when a listener gets in
touch with the blog author about something they
wrote about.

On more than one occasion, people have recog-
nized me from hearing my voice. Be it at BSDCan
where people I’ve never met before approached me
to say “hi” or the occasional student in my University
mentioning the podcast. It’s great to start conversa-
tions like that and I usually want to know what they like
about the podcast. We’re far from the celebrity status and I don’t know if I would want that
life, but there are people out there who look forward to our show every week and appreci-
ate the efforts we put into it. Feedback emails keep us going. It is a rewarding experience
whose value is not about how many listeners we have, but the individual benefits everyone
draws from it. We have answered a whole lot of technical questions over the years and I’m
sure it helped spread the use of BSD.

Future Dealings
People often ask us why we do not bring the video back they did at the beginning of the

show. For one, it is difficult to lip-sync a video when doing editing and doubles the effort
when not just showing our faces, but also websites or even videos we cover. JT would have
to bear the brunt of the editing work. For us moderators, it would be less of a problem and
our software does record the video during the recording sessions. Some listeners have also
commented that the video does not give them any added value. Be it the shape of my face
or the fact that they listen to the audio while commuting to work (and 45 minutes seems to
be a sweet spot), video is not seen as a benefit to some. As a compromise to those who like
to see us, we have recently added the raw video as an option for our Patreon sponsors. This
is as raw as it can get without any editing, but if you want talking heads, they are there (for a
price).

Will there be other changes, either in the way the show runs or who is speaking into the
microphone? We do not have any specific plans, but as the history of the show has shown,

6 of 7

Producing an episode
every week is still
an amazing achievement.

24FreeBSD Journal • January/February/March 2025

we sometimes must adapt to changing times and circumstances. The show is unique, just
as the BSDs are. Podcasts remain as popular as ever and we seem to have carved out our
little space. All of this is thanks to our sponsors and the listeners, who have been with us for
over 600 episodes. Without people blogging, writing code, doing events, and writing articles
about the BSDs, we would have nothing to report. I am excited about what we will be cover-
ing each week and how it will be received by the audience. If that does not change, then this
remains each and everyone’s place to be...SD.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project. In the
past, he served on the FreeBSD core team for two terms and was vice president of the
FreeBSD Foundation. For more than 8 years, he administered a big data cluster at the Uni-
versity of Applied Sciences, Darmstadt, Germany. He’s also teaching a course “Unix for De-
velopers” for undergraduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

7 of 7

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
mailto:maurer.jim@gmail.com

Donate to the Foundation!

Support
FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

https://freebsdfoundation.org/donate

26FreeBSD Journal • January/February/March 2025

1 of 12

In Part 1 and Part 2, we implemented a simple character device driver that implemented sup-
port for basic I/O operations. In this final article in this series, we will explore how character
devices can provide backing store for memory mappings in user processes. Unlike the pre-

vious article, we will not be extending the echo device driver but will instead implement new
drivers to demonstrate memory mapping. These drivers can be found in the same repository
as the echo driver at https://github.com/bsdjhb/cdev_tutorial.

Memory Mappings in FreeBSD
To understand how memory mapping works in character devices, one must first under-

stand how the FreeBSD kernel manages memory mappings in general. FreeBSD’s virtual
memory subsystem is derived from the Mach virtual memory subsystem inherited from
4.4BSD. While FreeBSD’s VM has seen substantial changes over the past thirty years, the
core abstractions remain the same.

In FreeBSD, a virtual memory address space is represented by a virtual memory map
(struct vm_map). A VM map contains a list of entries (struct vm_map_entry). Each entry
defines the properties for a contiguous range of address space including the permissions
and the backing store. Virtual memory objects (struct vm_object) are used to describe
the backing store for mappings. A VM object has its own logical address space of pages. For
example, each regular file on disk is associated with a VM object where the logical address
of a page in the VM object corresponds to offsets within the file, and the contents of a logi-
cal page are the file contents at the given file offset. Each VM map entry identifies its back-
ing store as a range of logically contiguous pages starting at a specific offset from a single
VM object. Figure 1 shows how a single VM map entry can be used to map the .data section
from the C runtime library into a process’ address space.

Figure 1: Mapping of C Runtime Library .data Section

Each VM object is associated with a pager which provides a set of functions used to de-
termine the contents of the pages associated with a VM object. The vnode pager is used
for VM objects associated with regular files from both block-storage filesystems and net-

BY JOHN BALDWIN

Character Device
Driver Tutorial (Part 3)

27FreeBSD Journal • January/February/March 2025

work filesystems. Its functions read data from the associated file to initialize pages and write
modified pages back to the associated file. The swap pager is used for anonymous VM ob-
jects that are not associated with a regular file. Zero-filled pages are allocated on first use. If
the system runs low on memory, the swap pager writes less frequently used dirty pages to
swap until they are needed again.

Logical pages in VM objects are represented by a VM page (struct vm_page). During
boot, the kernel allocates an array of VM pages such that each physical page of RAM is as-
sociated with a VM page object. VM pages are mapped into address spaces using architec-
ture-specific page table entries (PTEs). Managed VM pages maintain a linked list of mappings
using architecture-specific structures called PV entries.
This list can be used to remove all the mappings for a
VM page by invalidating the associated PTEs so that a
VM page can be reused to represent a different logical
page, either for a different VM object or a different log-
ical page address within the same VM object.

Each invocation of the mmap(2) system call creates
a new VM map entry in the calling process. The argu-
ments to the system call provide various properties of
the new entry including the permissions, length, and
offset into the backing VM object. The file descrip-
tor argument is used to identify the VM object to map
into the calling process’ address space. To map memory from a character device, a process
passes an open file descriptor for the character device as the file descriptor argument to the
mmap() system call. The role of the character device driver is to decide which VM object is
used to satisfy a memory mapping request as well as the contents of the pages backing the
VM object.

Default Character Device Pager
4.4BSD included a device VM pager to support character device memory mappings.

This device pager is designed to map regions of physical memory that do not change while
the OS is running. For example, it can expose MMIO regions like a frame buffer directly to
userspace.

The device pager assumes that each page in a device VM object is mapped to a page of
physical address space. This page can be a page of RAM or associated with an MMIO re-
gion. Importantly, once a logical address in a device VM object is associated with a physical
page, that mapping cannot be changed. This assumption works both ways in that the de-
vice pager also assumes that once a page of physical address space is associated with a de-
vice VM object, that physical page can never be reused for any other purpose. As a result,
the VM pages used by the device pager are unmanaged (no PV entries). However, this also
means that the VM system is not easily able to find existing mappings of these VM pages to
revoke existing mappings. In particular, destroying a character device via destroy_dev(9)
does not revoke existing mappings.

The default character device pager uses the character device mmap method both to val-
idate mapping requests and to determine the physical address associated with each logical
page address. The mmap method should validate the offset and protection arguments. If
the offset is not a valid logical page address or the requested protection is not supported,

2 of 12

4.4BSD included a device
VM pager to support
character device memory
mappings.

https://man.freebsd.org/mmap/2
https://man.freebsd.org/destroy_dev/9

28FreeBSD Journal • January/February/March 2025

this method should fail by returning an error code. Otherwise, the method should store the
physical address for the requested offset in the physical address argument and return zero.
If the page should be mapped with a memory attribute other than VM_MEMATTR_DEFAULT,
the memory attribute should be returned on success as well. When a mapping is created,
the device pager invokes this method on each logical page address of the requested map-
ping to validate the request. For the first page fault of a logical page address, the device
pager invokes the mmap method to obtain the physical address and memory attribute of
the backing page.

Listing 1 shows the mmap method for a simple character device driver that uses the
default device pager. This device allocates a single page of RAM when loaded and saves
a pointer to this page in the si_drv1 field. Due to the limitations of the character device
pager, this driver cannot be unloaded. Example 1 demonstrates a few interactions with the
device once it is loaded using a maprw test program to read and write from a mapping of
the device.

Listing 1: Using the Default Device Pager

static int
mappage_mmap(struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr,
 int nprot, vm_memattr_t *memattr)
{
 if (offset != 0)
 return (EINVAL);

 *paddr = pmap_kextract((uintptr_t)dev->si_drv1);
 return (0);
}

Example 1: Using the /dev/mappage Device

maprw read /dev/mappage 16 | hexdump
0000000 0000 0000 0000 0000 0000 0000 0000 0000
0000010
jot -c -s “” 16 ‘A’ | maprw write /dev/mappage 16
maprw read /dev/mappage 16
ABCDEFGHIJKLMNOP

Mapping Arbitrary VM Objects
Due to the limitations of the default character device pager, FreeBSD has extended the

support for character device memory mappings. FreeBSD 8.0 introduced a new mmap_sin-
gle character device method. This method is called on every mmap() invocation that maps
a character device. The mmap_single method must validate the entire mmap() request in-
cluding the offset, size, and requested protection. If the request is valid, the method should
return a reference to a VM object to use for the mapping. The method can either create
a new VM object or return an additional reference to an existing VM object. If the mmap_
single method returns the ENODEV error (the default behavior), mmap() will use the default
character device pager.

3 of 12

29FreeBSD Journal • January/February/March 2025

The mmap_single method can also alter the offset (but not size) used for the mapping
when returning a VM object. This permits a character device to use the initial offset of a
mapping as a key to identify a specific VM object to map. For example, a driver might have
two internal VM objects and use offset 0 to map the first VM object, and an offset of
PAGE_SIZE to map the second VM object. For the second case, the mmap_single method
would reset the effective offset to 0 so that the resulting mapping starts at the beginning
of the second VM object.

However, a character device doesn’t have to use multiple VM objects to benefit from the
mmap_single method. The ability to use VM objects with other pagers can be useful. For
example, the physical pager creates VM objects backed by wired pages of physical RAM.
Unlike the default device pager, these pages are managed and can be safely freed when the
VM object is destroyed. Listing 2 updates the mappage device driver from earlier to use a
physical pager VM object instead of the default character device pager. This version of the
device driver can be safely unloaded since the VM object will persist after the driver is un-
loaded until all mappings have been destroyed.

Listing 2: Using the Physical Pager

static int
mappage_mmap_single(struct cdev *cdev, vm_ooffset_t *offset, vm_size_t size,
 struct vm_object **object, int nprot)
{
 vm_object_t obj;

 obj = cdev->si_drv1;
 if (OFF_TO_IDX(round_page(*offset + size)) > obj->size)
 return (EINVAL);

 vm_object_reference(obj);
 *object = obj;
 return (0);
}

static int
mappage_create(struct cdev **cdevp)
{
 struct make_dev_args args;
 vm_object_t obj;
 int error;

 obj = vm_pager_allocate(OBJT_PHYS, NULL, PAGE_SIZE,
 VM_PROT_DEFAULT, 0, NULL);
 if (obj == NULL)
 return (ENOMEM);
 make_dev_args_init(&args);
 args.mda_flags = MAKEDEV_WAITOK | MAKEDEV_CHECKNAME;
 args.mda_devsw = &mappage_cdevsw;

4 of 12

30FreeBSD Journal • January/February/March 2025

 args.mda_uid = UID_ROOT;
 args.mda_gid = GID_WHEEL;
 args.mda_mode = 0600;
 args.mda_si_drv1 = obj;
 error = make_dev_s(&args, cdevp, “mappage”);
 if (error != 0) {
 vm_object_deallocate(obj);
 return (error);
 }
 return (0);
}

static void
mappage_destroy(struct cdev *cdev)
{
 if (cdev == NULL)
 return;

 vm_object_deallocate(cdev->si_drv1);
 destroy_dev(cdev);
}

Per-Open State
In the first article in this series, we demonstrated support for per-instance data using the

si_drv1 field. Some character device drivers need to maintain a unique state for each open
file descriptor. That is, if a character device is opened multiple times, the driver wishes to
provide different behavior to each open reference.

FreeBSD provides this feature via a family of functions. Typically, a character device driver
creates a new instance of per-open state in the open method and associates that instance
with the new file descriptor by calling devfs_set_
cdevpriv(9). This function accepts a void pointer argu-
ment and a destructor callback function. The destruc-
tor is invoked to clean the per-open state when the last
reference to the file descriptor is closed. Other charac-
ter device switch methods call devfs_get_cdevpriv(9) to
retrieve the void pointer associated with the current file
descriptor. Note that this family of functions always op-
erates on the current file descriptor as determined im-
plicitly by the caller context. The driver does not pass an
explicit reference to a file descriptor to these functions.

Listing 3 shows the open and mmap_single meth-
ods as well as the cdevpriv destructor for a new memfd
character device driver. This simple driver provides similar functionality to the SHM_ANON ex-
tension in FreeBSD’s shm_open(2) implementation. Each open file descriptor of this device
is associated with an anonymous VM object. The VM object’s size grows, if necessary, when
it is mapped. The VM object can be shared with other processes by sharing the file descrip-

5 of 12

In the first article in this
series, we demonstrated
support for per-instance
data using the si_drv1 field.

https://man.freebsd.org/devfs_set_cdevpriv/9
https://man.freebsd.org/devfs_set_cdevpriv/9
https://man.freebsd.org/devfs_get_cdevpriv/9
https://man.freebsd.org/shm_open/2

31FreeBSD Journal • January/February/March 2025

tor, for example by passing the file descriptor over a UNIX domain socket. To implement
this, the driver allocates a new VM object in the open method and associates that VM ob-
ject with the new file descriptor. The mmap_single object retrieves the VM object for the
current file descriptor, grows it if necessary, and returns a reference to it. Finally, the destruc-
tor function drops the file descriptor’s reference on the VM object.

Listing 3: Per-Open Anonymous Memory

static int
memfd_open(struct cdev *cdev, int fflag, int devtype, struct thread *td)
{
 vm_object_t obj;
 int error;

 /* Read-only and write-only opens make no sense. */
 if ((fflag & (FREAD | FWRITE)) != (FREAD | FWRITE))
 return (EINVAL);

 /*
 * Create an anonymous VM object with an initial size of 0 for
 * each open file descriptor.
 */
 obj = vm_object_allocate_anon(0, NULL, td->td_ucred, 0);
 if (obj == NULL)
 return (ENOMEM);
 error = devfs_set_cdevpriv(obj, memfd_dtor);
 if (error != 0)
 vm_object_deallocate(obj);
 return (error);

}

static void
memfd_dtor(void *arg)
{
 vm_object_t obj = arg;

 vm_object_deallocate(obj);
}

static int
memfd_mmap_single(struct cdev *cdev, vm_ooffset_t *offset, vm_size_t size,
 struct vm_object **object, int nprot)
{
 vm_object_t obj;
 vm_pindex_t objsize;
 vm_ooffset_t delta;

6 of 12

32FreeBSD Journal • January/February/March 2025

 void *priv;
 int error;

 error = devfs_get_cdevpriv(&priv);
 if (error != 0)
 return (error);
 obj = priv;

 /* Grow object if necessary. */
 objsize = OFF_TO_IDX(round_page(*offset + size));
 VM_OBJECT_WLOCK(obj);
 if (objsize > obj->size) {
 delta = IDX_TO_OFF(objsize - obj->size);
 if (!swap_reserve_by_cred(delta, obj->cred)) {
 VM_OBJECT_WUNLOCK(obj);
 return (ENOMEM);
 }
 obj->size = objsize;
 obj->charge += delta;
 }

 vm_object_reference_locked(obj);
 VM_OBJECT_WUNLOCK(obj);
 *object = obj;
 return (0);
}

Extended Character Device Pagers
The mmap_single method mitigates some of the limitations of the default character de-

vice pager by permitting a character device to use VM objects backed by any pager as well
as permitting a character device to associate different VM objects with different offsets.
However, some limitations remain. The device pager is unique among other pagers in that
it can map physical addresses that are not associated with physical RAM such as MMIO re-
gions. Due to its use of unmanaged pages, there is no way to revoke mappings of the device
pager nor a way for a driver to know if all mappings have been removed. FreeBSD 9.1 intro-
duced a new interface to the device pager that provides solutions to both problems.

The new interface requires character device drivers to explicitly create device VM objects.
These VM objects are then used by the mmap_single method to provide a backing store
for mappings. In the new interface, the mmap character device method is replaced by a
new method structure (struct cdev_pager_ops). This structure includes methods invoked
when a VM object is created (cdev_pg_ctor), a page fault requests a page from a VM ob-
ject (cdev_pg_fault), and a VM object is destroyed (cdev_pg_dtor). VM objects using the
extended device pager are created by calling cdev_pager_allocate(). The first argument
to this function is an opaque pointer stored in the handle member of the new VM object.
This pointer is also passed as the first argument to the constructor and destructor pag-
er methods. The second argument to cdev_pager_allocate() is the object type, either

7 of 12

33FreeBSD Journal • January/February/March 2025

OBJT_DEVICE or OBJT_MGTDEVICE. The third argument is a pointer to a struct cdev_
pager_ops instance.

The cdev_pager_allocate() function only creates a single VM object for each opaque
pointer. If the same opaque pointer is passed to a subsequent call to cdev_pager_
allocate(), the function will return a pointer to the existing VM object instead of creating a
new one. In this case, the VM object’s reference count is increased, so cdev_pager_
allocate() always returns a new reference to the returned VM object.

Let’s make use of this interface to extend the original version of the mappage driver from
Listing 1 so that it can be safely unloaded while there are no active mappings. In this case,
we will use an OBJT_DEVICE VM object. This still uses
unmanaged mappings of a single wired page allocated
when the driver is loaded. However, there is now addi-
tional state needed to determine if that allocated page
is in use, so this version of the driver defines a softc
structure containing the pointer to the page, a bool-
ean variable to track if the page is actively mapped,
a boolean to track if the driver is being unloaded (in
which case new mappings are disallowed), and a mutex
to guard access to the boolean variables. A pointer to
the softc structure is stored in the si_drv1 field of the
character device and is also used as the opaque handle
for the VM object. The mmap_single character device
method validates each mapping request (including failing requests while an unload is pend-
ing) and calls cdev_pager_allocate() to obtain a reference to the VM object mapping the
wired page. Note that the mmap_single method doesn’t have to handle the cases of cre-
ating a new VM object or reusing an existing VM object separately. The constructor pager
method sets the boolean mapped softc member to true. Once the last mapping of the VM
object is removed and the VM object is destroyed, the destructor pager method is called
which sets the mapped softc member to false. The mappage_destroy() function fails to un-
load with the EBUSY error if the mapped member is true when an unload is requested.

The page fault pager method is more complex than the mmap character device meth-
od it replaces. The page fault method works more directly with the VM system and how a
fault is normally handled by VM pagers. When a page fault occurs, the VM system allocates
a free page of RAM and invokes a pager method to fill that page with the appropriate con-
tents. The swap and physical pagers zero new pages in this method, while the vnode pag-
er reads the appropriate contents from the associated file. The default device pager takes
a different route. Since it is generally designed to map non-RAM addresses such as MMIO
regions, the default device pager allocates a “fake” VM page tied to the physical address re-
turned by the mmap method and replaces the new VM page allocated by the VM system
with the “fake” VM page (the new VM page is released back to the system as a free page).
The page fault pager method allows a driver to implement either approach by passing in a
pointer to the new VM page allocated by the VM system. The page fault pager method is
responsible for either filling that page with suitable content or replacing it with a “fake” VM
page. For our driver, we compute the physical address of our wired page the same as before
but use that physical address to construct a “fake” VM page.

Listing 4 shows the mmap_single character device method, the three device pager meth-

8 of 12

The cdev_pager_allocate()
function only creates a
single VM object for each
opaque pointer.

34FreeBSD Journal • January/February/March 2025

ods, and the mappage_destroy() function called during module unload. In example 2, we
suspend the maprw test program while it has the page from the mappage device mapped
and attempt to unload the driver which fails. After resuming the test program and letting it
unmap the device by exiting, the driver is unloaded successfully.

Listing 4: Using the Extended Device Pager

static struct cdev_pager_ops mappage_cdev_pager_ops = {
 .cdev_pg_ctor = mappage_pager_ctor,
 .cdev_pg_dtor = mappage_pager_dtor,
 .cdev_pg_fault = mappage_pager_fault,
};

static int
mappage_mmap_single(struct cdev *cdev, vm_ooffset_t *offset, vm_size_t size,
 struct vm_object **object, int nprot)
{
 struct mappage_softc *sc = cdev->si_drv1;
 vm_object_t obj;

 if (round_page(*offset + size) > PAGE_SIZE)
 return (EINVAL);

 mtx_lock(&sc->lock);
 if (sc->dying) {
 mtx_unlock(&sc->lock);
 return (ENXIO);
 }
 mtx_unlock(&sc->lock);

 obj = cdev_pager_allocate(sc, OBJT_DEVICE, &mappage_cdev_pager_ops,
 OFF_TO_IDX(PAGE_SIZE), nprot, *offset, curthread->td_ucred);
 if (obj == NULL)
 return (ENXIO);

 /*
 * If an unload started while we were allocating the VM
 * object, dying will now be set and the unloading thread will
 * be waiting in destroy_dev(). Just release the VM object
 * and fail the mapping request.
 */
 mtx_lock(&sc->lock);
 if (sc->dying) {
 mtx_unlock(&sc->lock);
 vm_object_deallocate(obj);
 return (ENXIO);
 }

9 of 12

35FreeBSD Journal • January/February/March 2025

 mtx_unlock(&sc->lock);

 *object = obj;
 return (0);
}

static int
mappage_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
 vm_ooffset_t foff, struct ucred *cred, u_short *color)
{
 struct mappage_softc *sc = handle;

 mtx_lock(&sc->lock);
 sc->mapped = true;
 mtx_unlock(&sc->lock);

 *color = 0;
 return (0);
}

static void
mappage_pager_dtor(void *handle)
{
 struct mappage_softc *sc = handle;

 mtx_lock(&sc->lock);
 sc->mapped = false;
 mtx_unlock(&sc->lock);
}

static int
mappage_pager_fault(vm_object_t object, vm_ooffset_t offset, int prot,
 vm_page_t *mres)
{
 struct mappage_softc *sc = object->handle;
 vm_page_t page;
 vm_paddr_t paddr;

 paddr = pmap_kextract((uintptr_t)sc->page + offset);

 /* See the end of old_dev_pager_fault in device_pager.c. */
 if (((*mres)->flags & PG_FICTITIOUS) != 0) {
 page = *mres;
 vm_page_updatefake(page, paddr, VM_MEMATTR_DEFAULT);
 } else {
 VM_OBJECT_WUNLOCK(object);

10 of 12

36FreeBSD Journal • January/February/March 2025

 page = vm_page_getfake(paddr, VM_MEMATTR_DEFAULT);
 VM_OBJECT_WLOCK(object);
 vm_page_replace(page, object, (*mres)->pindex, *mres);
 *mres = page;
 }
 vm_page_valid(page);
 return (VM_PAGER_OK);
}

...

static int
mappage_destroy(struct mappage_softc *sc)
{
 mtx_lock(&sc->lock);
 if (sc->mapped) {
 mtx_unlock(&sc->lock);
 return (EBUSY);
 }
 sc->dying = true;
 mtx_unlock(&sc->lock);

 destroy_dev(sc->dev);
 free(sc->page, M_MAPPAGE);
 mtx_destroy(&sc->lock);
 free(sc, M_MAPPAGE);
 return (0);
}

Example 2: Safely Unloading via the Extended Device Pager

maprw write /dev/mappage 16
^Z
Suspended
kldunload mappage
kldunload: can’t unload file: Device busy
fg
maprw write /dev/mappage 16
maprw: empty read
kldunload mappage

The extended device pager interface also adds a new type of device pager. The OBJT_
MGTDEVICE pager differs from OBJT_DEVICE in that it always uses managed pages for map-
pings instead of unmanaged pages. This means that mappings for a page can be forceful-
ly revoked even while the page is mapped. For fictitious pages mapping non-RAM pages,
“fake” VM pages must be explicitly created before using them in the pager via the vm_phys_
fictitious_reg_range() function.

11 of 12

37FreeBSD Journal • January/February/March 2025

Conclusion
In this article, we dove into some more unusual use cases for character devices including

memory mappings and per-open state. Thanks for reading this series of articles. Hopefully,
it was a useful introduction to character device drivers in FreeBSD.

JOHN BALDWIN is a systems software developer. He has directly committed chang-
es to the FreeBSD operating system for over twenty years across various parts of the ker-
nel (in-cluding x86 platform support, SMP, various device drivers, and the virtual memory
subsys-tem) and userspace programs. In addition to writing code, John has served on the
FreeBSD core and release engineering teams. He has also contributed to the GDB debug-
ger. John lives in Ashland, Virginia with his wife, Kimberly, and three children: Janelle, Evan,
and Bella.

12 of 12

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number
of applications, off ers powerful solutions, and cutting edge
features. The best part? It’s FREE of charge and comes with
full source code.
Did you know that working with a mature, open source
project is an excellent way to gain new skills, network
with other professionals, and diff erentiate yourself in a
competitive job market? Don’t miss this opportunity to work
with a diverse and committed community bringing about a
better world powered by FreeBSD.

The FreeBSD Community is proudly supported by

The FreeBSD Project is looking for

• Programmers • Testers

• Researchers • Tech writers

• Anyone who wants to get involved

Find out more by

Checking out our website
freebsd.org/projects/newbies.html

Downloading the Software
freebsd.org/where.html

We’re a welcoming community looking
for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don’t forget to check out the latest
grant opportunities at
freebsdfoundation.org

Help Create the Future.
Join the FreeBSD Project!

https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
https://freebsdfoundation.org

38FreeBSD Journal • January/February/March 2025

In the last column, we created a simple circuit that blinked the LEDs on the board, and we
learned two different ways to load this circuit into the FPGA. Sadly, when we loaded our
circuit, the CPU stopped running. Furthermore, while this is mildly interesting, there is no

interaction with the CPUs on the chip. In this column, we’ll take a little more complex step
into Vivado, learn how to keep our CPU running when we load circuits, and explore the
GPIO system in FreeBSD.

Previously when we used either U-boot or xbit2bin and /dev/devcfg under
FreeBSD we saw that FreeBSD halted. What I think happens is the processor’s system
stops running. Turns out the circuit FPGA.bit
file we used didn’t include configuration infor-
mation for the processor system. In this install-
ment, we’ll fix this.

I vacillated over how to present the informa-
tion in this episode. From a learning standpoint,
the most natural way to do this is probably using
Vivado’s GUI. On the other hand, GUIs do not
lend themselves well to automation for the obvi-
ous reason that they require a human to run the
GUI. Further, it is difficult and tedious to describe
the GUI steps. Fortunately, Vivado has two fea-
tures that make it relatively easy to work around
this. When working with the GUI, the Vivado tool produces a .jou file which is a journal of all
the TCL commands that the GUI is executing under the hood. Vivado also provides the TCL
command write_project_tcl which can be used to recreate the project file that Vivado
creates when you use the GUI. I generally prefer using the .jou file as I find the scripts more
compact and understandable and if I run the scripts I can then either start the GUI or use
write_project_tcl to write a project script. Scripts also seem a more natural fit for a revi-
sion control system like git.

If we look at “Figure 1-1: Zynq-7000 SoC Overview Figure 1-1: Zynq-7000 SoC Overview”
from “UG585: Zynq-7000 SoC Technical Reference Manual” we can see that there are a

BY CHRISTOPHER R. BOWMAN

1 of 4

Embedded FreeBSD:
Learning to Walk–Interfacing
to the GPIO System

 In this column, we’ll take
a little more complex step
into Vivado.

39FreeBSD Journal • January/February/March 2025

variety of peripheral blocks (UART, I2C, SPI, etc.) which can be connected via a multiplex-
or to external pins. Section “1.2.3 I/O Peripherals” of the same manual details a bit more
of the capabilities. For our purpose, now, we are just going to take note that we can route
signals from the gpio device out to pins on the chip with a fair amount of flexibility. If
we also look at the Arty Z7 Reference Manual section 12 “Basic I/O,” we can see that the
green LEDs on the board are connected to chip pins which sink to ground via current set-
ting resistors. If we can set these pins high, the
LEDs will light up, and conversely, if the pins are
set low, the LEDs turn off.

To toggle these pins, we’ll use the Vivado soft-
ware to route the GPIO device outputs to the
LED pins which will allow the GPIO device to con-
trol them. I didn’t know it when I started this jour-
ney, but FreeBSD has a GPIO subsystem, and
somebody has even kindly written a driver to
make this all usable from user space.

To get started, clone the git repo onto a Linux
host with the Vivado tools (I showed how to set
up a bhyve in a previous installment) and type
make at the top of the repo. If you have the Viva-
do tools in your path and everything works right,
it should run Vivado and pull in a script that will
instantiate the processor subsystem and connect
the first four EMIO pins of the GPIO device to the LED pins. The inclusion of the proces-
sor subsystem will fix the problem we previously had with the processors stopping when we
programmed the device with a bit stream.

Look for the zynq_gpio_leds.bit file built by running make in the top level of the git
repo. Program this into the chip as we did last time using the xbit2bin program:

xbit2bin zynq_gpio_leds.bit

You should see exactly nothing happen. Not very exciting, but at least the processor
should still be running.

Now, we need to use FreeBSD’s GPIO subsystem. Typing man gpioctl gives a nice
summary of what is possible.

As root, we can run the gpioctl program to list the available pins:

gpioctl -f /dev/gpioc0 -l

Didn’t work, did it? Yep, I was a little surprised by this, too. Looking at the GPIO source in
/usr/src/sys/arm/xilinx/zy7_gpio.c I see there are probe and attach functions in the
driver, but looking at my ARTYZ7 system dmesg output, I don’t see anything indicating the
device was found. Looking more closely at the probe function:

static int
zy7_gpio_probe(device_t dev)
{

 if (!ofw_bus_status_okay(dev))
 return (ENXIO);

2 of 4

FreeBSD has a GPIO
subsystem, and
somebody has even
kindly written a driver
to make this all usable
from user space.

https://reference.digilentinc.com/reference/programmable-logic/arty-z7/reference-manual?_gl=1*c286n6*_ga*MTg4NjczMDI1NC4xNzExMzUwMjY2*_ga_JSPEFFCPBT*MTcxMjM2NzMxNi4yLjAuMTcxMjM2NzMzMy40My4wLjA.
https://github.com/christopher-bowman/zynq_gpio_leds

40FreeBSD Journal • January/February/March 2025

 if (!ofw_bus_is_compatible(dev, “xlnx,zy7_gpio”))
 return (ENXIO);

 device_set_desc(dev, “Zynq-7000 GPIO driver”);
 return (0);
}

I can see that just about the only thing required to find the device is having the function
ofw_bus_is_compatible(dev, “xlnx,zy7_gpio”) return true.

In embedded systems, like most ARM systems, the hardware generally isn’t self-identify-
ing like a modern PCIe bus. The software can’t auto-identify what hardware is present and
where its control registers are in the memory address space. For this reason, many operat-
ing systems use FDTs (Flattened Device Trees) to describe their device memory map. FDTs
are text files that describe information about an embedded system including, among other
things, what devices are present and where they are in memory. This allows the software to
work with a variety of devices without needing to hard code information. The same kernel
can often work with slightly different devices just by using a different FDT. FDTs are trans-
lated from DTS files (Device Tree Source) into DTB (Device Tree Binary) files via a tool called
dtc, the device tree compiler. dtc has options that allow you to compile a DTS or decompile
a DTB. The latter comes in very handy. For instance, you can ask the kernel for the DTB it’s
using and have dtc turn it into text with:

sysctl -b hw.fdt.dtb | dtc -I dtb -O dts

If we look for the gpio section, we see (among other things) this:

 gpio@e000a000 {
 compatible = “xlnx,zy7_gpio”;
 };

The compatible string in the DTB isn’t what the driver is expecting, so it assumes the de-
vice isn’t present. If you look at the FreeBSD boot output, you’ll see that the kernel is using
the DTB from the EFI firmware emulation that U-boot is providing. We could change this
by fixing what U-boot is providing, but that would require patching and recompiling u-boot.
Instead, FreeBSD provides the capability to load a DTB file at the kernel loader prompt or
using a loader.conf variable. You can load a DTB file from the loader using the following
/boot/loader.conf variables:

fdt_name=”/boot/dtb/zynq-artyz7.dtb”
fdt_type=”dtb”
fdt_load=”YES”

This works but there is also a third way. Turns out you can create FDT/DTS overlays which
are patches to an FDT/DTS/DTB. We just need a DTS overlay that adds the correct compati-
ble string and we should be good to go. Here is the heart of the DTS overlay I’ve included in
the dts directory with a Makefile from the project repo:

&{/axi/gpio@e000a000} { compatible = “xlnx,zy7_gpio”; };

We may look at FDT files in more detail in a future column, so I won’t explain it here. In-
stead, I’ll just give you a flavor of the file. Once you’ve built the DTB overlay, take the generat-

3 of 4

41FreeBSD Journal • January/February/March 2025

ed DTB and put it in /boot/dtb/overlays, and add the following to /boot/loader.conf:

fdt_overlays=”artyz7_gpio_overlay.dtb”

Reboot and note the new dmesg output:

gpio0: <Zynq-7000 GPIO driver> mem 0xe000a000-0xe000afff irq 5 on simplebus0

Now let’s try that gpioctl command again and you should see a line like this among
others:

pin 64:	 0	EMIO_0<IN>

We need to tell the GPIO subsystem to configure the pin as output, and then we can try
toggling it:

gpioctl -f /dev/gpioc0 -c EMIO_0 OUT
gpioctl -f /dev/gpioc0 -t EMIO_0

I’ll wait. Try not to stand up and dance when the light comes on. See if you can figure out
how to turn on the other LEDs and then run the script in scripts/blink.sh with an argu-
ment of 2. You should see the LEDs blink as they count in binary.

If you’ve got questions, comments, feedback, or flames on any of this I’d love to hear
from you. You can contact me at articles@ChrisBowman.com.

CHRISTOPHER R. BOWMAN first used BSD back in 1989 on a VAX 11/785 while working
2 floors below ground level at the Johns Hopkins University Applied Physics Laborato-
ry. He later used FreeBSD in the mid 90’s to design his first 2 Micron CMOS chip at the
University of Maryland. He’s been a FreeBSD user ever since and is interested in hard-
ware design and the software that drives it. He has worked in the semiconductor design
automation industry for the last 20 years.

4 of 4

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

mailto:articles@ChrisBowman.com
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
mailto:maurer.jim@gmail.com

42FreeBSD Journal • January/February/March 2025

1 of 5

TCP Connection Setup
The Transmission Control Protocol (TCP) is a connection-oriented transport protocol

providing a reliable bidirectional byte stream service. The TCP connection setup requires
three TCP segments to be exchanged, which is called a three-way handshake. The TCP end-
point initiating the TCP connection and sending the first TCP segment, the SYN segment,
is called the client. The TCP endpoint waiting for the first TCP segment is called the server
and responds to the received SYN segment with a SYN ACK segment. When the client re-
ceives this SYN ACK segment, it completes the handshake by sending an ACK segment.

The TCP handshake is not only used to synchronize the state between the two endpoints
including the initial sequence numbers for providing reliability, but also to negotiate the use
of TCP extensions via TCP options. With today’s Internet, the most widely deployed TCP
options during the handshake (contained in the SYN and SYN ACK segments) are:

1.	 The maximum segment size (MSS) option
The MSS option contains a 16-bit number (between 0 and 65535), which is the maxi-
mum number of payload bytes the sender of this option is willing to receive in a single
TCP segment. For this number, it is assumed that no options at the IP layer and the
TCP layer are used. In case such options are used, the number must be decremented
by the size of the options. This helps the TCP sender to avoid sending TCP segments
requiring fragmentation at the IP layer.

2.	The SACK-permitted option
This option announces that the sender can handle selective acknowledgments (SACK
options). This improves the performance in case of packet loss.

3.	The TCP Window Scale option
This option contains a natural number between 0 and 14. If both sides send this op-
tion, the receive window scaling is enabled. This allows the use of a larger receive win-
dow than would be allowed by the format of the TCP header, where the receive win-
dow is limited to 16 bits (and therefore 65535 bytes). This avoids the fact that the size
of the receiver window field in the TCP limits the throughput of a TCP connection.

4.	The TCP Timestamp option
This option contains two 32-bit numbers, which often encode some timing informa-
tion in millisecond granularity. It is used to improve the TCP performance.

BY RANDALL STEWART AND MICHAEL TÜXEN

The Handling of
SYN Segments in FreeBSD

43FreeBSD Journal • January/February/March 2025

TCP is specified using a state event machine. Initially, an endpoint is in the CLOSED state.
When the endpoint is willing to accept TCP connections (on the server side), the TCP end-
point is moved to the LISTEN state. When receiving the SYN segment from the client side
and replying with a SYN ACK segment, the endpoint enters the SYN RECEIVED state. Once
the TCP endpoint receives the ACK segment sent by the client, the TCP endpoint enters
the ESTABLISHED state. These states can be observed using the netstat or sockstat
command line tools.

The Application Programmers Interface (API) used to control TCP endpoints is the sock-
et API. Programs normally use a listening socket, which tells
the TCP implementation that it is OK to accept TCP con-
nections on this endpoint, and for each accepted TCP con-
nection the programs use a separate socket for each TCP
connection. Applications can set parameters on the listen-
ing socket and most of the time these settings are then in-
herited by the accepted sockets. This article focuses on the
TCP connection setup on the server side. It should be not-
ed that this functionality applies to all TCP stacks (default,
RACK, BBR, …).

SYN Flooding Attacks
When TCP was initially implemented, a new TCP endpoint

was created whenever a SYN segment was received for a TCP endpoint in the LISTEN state.
This required a memory allocation and resulted in a new TCP endpoint in the SYN RECEIVED
state. All necessary information including the information related to the TCP options re-
ceived in the SYN segment was stored in the TCP endpoint. This was done without any verifi-
cation of the information provided, the IP address, and the TCP port number.

This allowed an attacker to send many SYN segments to a server and the server would al-
locate TCP endpoints until it ran out of resources. Therefore, the attacker could perform a
denial-of-service attack, since once the server has no resources available anymore, it would
not accept SYN segments from valid clients. The attacker only needs to send SYN seg-
ments, in particular, the attacker would not respond to any SYN ACK segments received.
The attacker can even use spoofed IP addresses (IP addresses the attacker does not own).

The goal of this SYN flooding attack is that the receiver runs out of resources and is
therefore not able to provide the service it is intended to provide. In FreeBSD, there are two
mitigations implemented in the TCP stack for dealing with SYN flooding attacks:

1.	 Reducing the amount of memory allocated when a TCP endpoint moves from
CLOSED to SYN RECEIVED state. This is done by using the SYN cache described in
the next section.

2.	 Not allocating any memory when processing the incoming SYN segment. This is done
by using SYN cookies as described in the section following SYN cache.

SYN Cache
The initial implementation of the SYN cache was added to the FreeBSD source tree in

November 2001. It reduces the memory overhead of TCP endpoints in the SYN RECEIVED
state by not allocating a full TCP endpoint, but a TCP SYN cache entry (struct syncache
as defined in sys/netinet/tcp_syncache.h) instead. A TCP SYN cache entry is smaller

2 of 5

This article focuses on the
TCP connection setup on
the server side.

44FreeBSD Journal • January/February/March 2025

than a TCP endpoint and only allows storage of information relevant in the SYN RECEIVED
state. This information includes:

•	The local and remote IP address and TCP port number.
•	The information relevant for performing timer-based retransmissions of the SYN ACK

segment.
•	The local and remote TCP initial sequence number.
•	The MSS reported by the peer in the MSS option of the received SYN segment.
•	The local and remote window scaling shift values exchanged in the relevant window

scaling options of the SYN and SYN ACK segments.
•	Whether window scaling, timestamp, and SACK support were negotiated.
•	Accurate ECN state.
•	Additional IP layer information.
When a SYN segment is received for a listening endpoint, a SYN cache entry is allocated,

the relevant information is stored in it and a SYN ACK seg-
ment is sent in response. If SYN cookies are disabled and
there is a bucket overflow, the oldest SYN cache entry in the
bucket is tossed. If the corresponding ACK segment is re-
ceived, a full TCP endpoint is created with the data from the
SYN cache entry and then the SYN cache entry is freed. The
SYN cache also assures that the SYN ACK segment is re-
transmitted in case the corresponding ACK segment is not
received in time.

The sysctl-variable net.inet.tcp.syncookies (which
defaults to 1) control whether SYN cookies, as described in
the next section, will be used in combination with the SYN
cache to cover the case where no SYN cache entry can be al-
located or looked up.

The SYN cache is vnet specific and organized as a hash
table. The number of buckets is controlled by the loader tunable net.inet.tcp.syncache.
hashsize (default 512). The maximum number of SYN cache entries in each hash bucket is
controlled by the loader tunable net.inet.tcp.syncache.bucketlimit (default 30). There
is also an overall limit of SYN cache entries given by the loader tunable net.inet.tcp.syn-
cache.cachelimit (default is 15360 = 512 * 30). The number of currently used SYN cache
entries is reported by the read-only sysctl-variable net.inet.tcp.syncache.count.

There are additional sysctl-variables relevant to the SYN cache. These are:
•	net.inet.tcp.syncache.rst_on_sock_fail

Controls for sending an RST segment or not in case a socket can’t be created success-
fully (which defaults to 1).

•	net.inet.tcp.syncache.rexmtlimit
The maximum number of retransmissions of a SYN ACK segment (which defaults to 3).

•	net.inet.tcp.syncache.see_other
Control the visibility of the SYN cache entries (which defaults to 0).

The TCP SYN cache allows the server side to perform a fully functional handshake with a
minimized memory resource. There is no functional difference to using a full TCP endpoint
for TCP endpoints in the SYN RECEIVED state. Even tools like netstat or sockstat will re-
port the entries from the SYN cache.

3 of 5

When a SYN segment
is received for a listening
endpoint, a SYN cache
entry is allocated.

45FreeBSD Journal • January/February/March 2025

Supporting additional TCP options is not a problem, since the TCP SYN cache entry can
be expanded.

The sysctl-variable net.inet.tcp.syncookies_only (defaulting to 0) can be used to
disable the use of the SYN cache. In this case, only SYN cookies described in the next sec-
tion will be used.

SYN Cookies
An additional level of protection against SYN flooding attacks was added to the SYN

cache implementation in December 2001. Instead of allocating a smaller amount of mem-
ory when processing a received SYN segment, the relevant information is stored in a so-
called SYN cookie and sent to the client in the SYN ACK segment. Then the client is ex-
pected to reflect the SYN cookie in the ACK segment. When the ACK segment is finally
processed by the server, all relevant information is in the SYN cookie and the ACK seg-
ment. So, the server can create a TCP endpoint in the ES-
TABLISHED state. This way a SYN flooding attack does not
result in any memory exhaustion. However, the generation
of the SYN cookie mustn’t require too many CPU cycles. If
the SYN cookie generation is not cheap CPU-wise, it might
allow a denial-of-service attack: this time not against the
memory resource, but against the CPU resource.

The only field in the TCP header that can be chosen ar-
bitrarily by the server and is reflected by the client is the ini-
tial sequence number of the server. This field is a 32-bit in-
teger and therefore used as the SYN cookie.

In FreeBSD, these 32 bits are split into a 24-bit message
authentication code (MAC) and 8 bits, which are used as follows:

•	3 bits for encoding one of 8 MSS values: 216, 536, 1200, 1360, 1400, 1440, 1452, 1460. For
MSS values sent by the client in the MSS option not in this list, the largest value not ex-
ceeding the given one is used.

•	3 bits for encoding if the peer does not support window scaling or uses one of the 7
values: 0, 1, 2, 4, 6, 7, 8. If the client was sending a value not in the list, the largest value
not exceeding the given one is used.

•	1 bit for encoding whether the client sent the SACK-permitted option or not.
•	1 bit for selecting one of two keys.
The MAC uses a secret key, which is updated every 15 seconds. The current and the last

secret keys are kept around and used based on the bit in the SYN cookie for selecting the
secret key.

The computation of the MAC includes the local and remote IP addresses, the initial se-
quence number of the client, the above 8 bits, and some internal information. From the
MAC, 24 bits are generated and combined with the 8 bits from above, the SYN cookie is
constructed.

When the ACK segment of the three-way handshake is received by the server, the MAC
is verified. If that is successful, the TCP endpoint is created based on the information in the
SYN cookie, which provides an approximation of the MSS option, an approximation of the
window shift, and whether the client announced support for the SACK extension. All the
other relevant information must be recovered from the ACK segment. This recovered in-

4 of 5

The MAC uses a secret
key, which is updated
every 15 seconds.

46FreeBSD Journal • January/February/March 2025

formation includes the local and remote IP addresses and port numbers, the local and re-
mote initial sequence numbers whether the TCP timestamp option is used or not, and in
the case it is, what the current parameters are.

Comparison of SYN Cache and SYN Cookies
The advantage of SYN cookies compared to the SYN cache is very clear: no memory

allocation when a new SYN ACK segment is received. However, using SYN cookies also
has its downsides:

•	The MSS is approximated by 8 values, all smaller than or equal to 1460. Therefore, there
is no support for MTUs larger than 1500 bytes for IPv4.

•	The shift used for window scaling is approximated by 7 values, all smaller than or equal
to 8. This means that larger window shifts above 8 are not supported and thus the con-
nection will have a smaller window size.

•	No support for TCP options other than the ones widely deployed right now. This makes
it hard to support new TCP options used to negotiate new TCP features.

•	No retransmissions of the SYN ACK segment, if a SYN ACK segment is lost the end-
point initiating the connection will have to retry sending its SYN segment.

•	No visibility of TCP endpoints in the SYN RECEIVED state.
•	No support for IP-level information.
Using the SYN cache does not have any of these limitations and is transparent but re-

quires a memory allocation for each TCP endpoint in the SYN RECEIVED state.

Combined Usage of SYN Cache and SYN Cookies
Using only SYN cookies provides a better mitigation against SYN flooding attacks than

using the SYN cache, but it comes with the drawback of limited functionality. Therefore, the
default configuration of FreeBSD enables the SYN cache in combination with SYN cookies.
This means that when a received SYN segment is processed, a SYN cache entry is gener-
ated, and the SYN ACK segment being sent contains a SYN cookie. If a SYN cache buck-
et overflows, it is assumed that this happens due to an ongoing SYN flooding attack, and
therefore using the SYN cache is paused. During this time, only SYN cookies are used.

This additional functionality, introduced in September of 2019, gives the advantages of
the SYN cache during normal operation, but also the improved protection of SYN cookies
when a SYN flooding attack is going on.

RANDALL STEWART (rrs@freebsd.org) has been an operating system developer for over
40 years and a FreeBSD developer since 2006. He specializes in Transports including TCP
and SCTP but has also been known to poke into other areas of the operating system. He is
currently an independent consultant.

MICHAEL TÜXEN (tuexen@freebsd.org) is a professor at the Münster University of Applied
Sciences, a part-time contractor for Netflix, and a FreeBSD source committer since 2009.
His focus is on transport protocols like SCTP and TCP, their standardization at the IETF and
their implementation in FreeBSD.

5 of 5

mailto:rrs@freebsd.org
mailto:tuexen@freebsd.org
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

47FreeBSD Journal • January/February/March 2025

I attended the Fall 2024 FreeBSD Summit at the NetApp San Jose Campus in Santana Row.
The event gave me a great opportunity to connect with the FreeBSD community, ex-
change ideas, and discuss ongoing projects. My main goal was to highlight the role of di-

rectly funded projects in the work of the FreeBSD Foundation through by giving a talk as
well as through informal conversation.

Meeting people face-to-face reinforced how valuable in-person engagement is. I had
many useful discussions about the impact of Foundation-funded initiatives, and I saw a lot
of interest in FreeBSD’s usability for laptops, which was central to my talk.

During the event, I met several interesting people who shared their experiences with,
and ambitions for, FreeBSD. During the same trip, I was also glad to have the opportunity to
meet the team at Framework which has helped me to understand more about the context
of the Foundation’s laptop project.

I delivered my talk, Learning as We Grow: Managing FreeBSD Infrastructure and Laptop
Projects at The FreeBSD Foundation, on Friday, Nov 8. The audience asked thoughtful ques-
tions, and I appreciated the chance to share insights into how we structure and fund these
projects.

One talk that especially stayed in my thoughts was The History of the BSD Daemon
by Marshall McKusick, which provided interesting insights into the history of BSD. He also
brought along t-shirts from past BSD conferences and gave them away, which was quite a
touching moment for all involved.

Santana Row provided a lively and convenient setting for the summit. The NetApp building
felt spacious and welcoming, which made it easy to meet people and have meaningful discus-
sions. The event was well organized, and the setting encouraged productive conversations.

Since the summit, I have already seen the benefits of the connections I made and the
conversations I had. The discussions and insights I gained have helped shape ongoing proj-
ects and reinforced the importance of community-driven development efforts.

Attending the Fall 2024 FreeBSD Summit gave me a chance to engage with the FreeBSD
community, share knowledge, and strengthen collaborations. The event helped highlight
the value of the FreeBSD Foundation’s investments and provided a great forum for discus-
sions on FreeBSD’s future. I look forward to continuing these conversations and building on
the momentum from the summit.

ALICE SOWERBY has a wealth of experience working to build teams and develop leaders
in the tech sector.

BY ALICE SOWERBY

Conference Report
1 of 1

Fall 2024
FreeBSD Summit

https://www.youtube.com/watch?v=2IwqWiC4KZg
https://www.youtube.com/watch?v=2IwqWiC4KZg
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

48FreeBSD Journal • January/February/March 2025

There are a lot of ways to be involved with Open Source software. Development is the
obvious thing that will jump to everyone first, but many people aren’t developers and
there are other ways to contribute.

You can write code, but you can also test in-progress developments and releases, read
and correct documentation, write new documentation, answer questions in one of a thou-
sand places, work on advocacy, raise money, coordinate contributors, or run events. Run-
ning events is an amazing way to give back to the community, but it can take an incredible
amount of work just to get ten people together.

We are lucky in the BSD world that we have three major geographically diverse confer-
ences, and any given year the calendar is burst-
ing with events. Ask anyone trying to slot in a
hackathon about the number of conflicts they
must work around.

Most Open Source projects don’t have the
required scale and infrastructure to run a regular
conference. Meeting is difficult, and some peo-
ple may be lucky enough to get help from their
employer to meet other developers a couple of
times a year. The cost required to put on a con-
ference is too much for most small projects and
interaction is often online only.

In Europe, FOSDEM fills an important ecosys-
tem niche. FOSDEM is the largest Open Source
conference in the world and is open to all. The event completely takes over the UCB cam-
pus in Brussels and boasts 8,000 or so attendees. FOSDEM handles the difficult logistics of
finding a venue and gives projects a place to meet, rooms to discuss and present, and plac-
es to show off demos. Such a large event doesn’t just enable developers of projects to meet
up, it also creates a lot of cross-pollination between projects possible.

To keep everyone busy, there is a main track of talks, hundreds of projects, or topic-spe-
cific dev rooms, and stands for projects to show their presence. FOSDEM needs projects
of all sizes to run, and in exchange, it gives those attendees access to everyone else who
comes to Brussels.

BY TOM JONES
FOSDEM 2025

Conference Report

We are lucky in the

BSD world that we have

three major geographically

diverse conferences.

1 of 3

49FreeBSD Journal • January/February/March 2025

Selling FreeBSD at FOSDEM 2025
I volunteered to help staff the FreeBSD table at FOSDEM. In the lead-up to the event, a

large envelope of stickers and a table runner arrived at my house, and I helped to coordinate
the delivery of a banner to Belgium.

To help projects communicate about what they do, FOSDEM offers tables or booths.
These act as a static place for users new and old to come and ask questions and give proj-
ects the chance of random passers-by stumbling onto an interesting project.

I spent most of the two days standing behind the table answering questions, giving away
stickers, and discussing FreeBSD ideas with other project members.

Staffing the table at an Open Source Project is a great way to see how much you know.
At times, there was a near-constant stream of people dropping by, ranging from current us-
ers and past users to those completely new to the project. Here are some of the questions I
was asked during FOSDEM about how we advocate for FreeBSD.

•	 What desktop does FreeBSD run?
•	 What can you do with FreeBSD?
•	 Can I have a sticker?
•	 Who uses FreeBSD?
•	 Why pick FreeBSD over << my favourite >> Linux distro?
•	 Convince my friend here to use FreeBSD.
•	 Can I run containers on FreeBSD?
•	 How is your project funded?
What are your answers?
I found these questions and the others—especially the ones in French I didn’t under-

stand and completely missed—an excellent touch point for the mind of the Open Source
community.

Hearing the questions people answer in this
environment is telling for what is of interest to
people thinking about other Operating Systems
(or those poor confused people thinking we
were a Linux distro after five no’s).

The focus on switching and desktops shows
a big gap in how we are presenting the project
when we attend events. Stickers are wonderful
and banners help people find us, but we lacked
some easy demos that show—yes, FreeBSD is
a desktop and can do almost anything you can
do on Linux. The desktop environment ques-
tions were interesting, many of the questioners
had already siloed us into a bucket with small,
focused Linux distros built around a single desktop environment. We can run them all, and
while satisfying for us, wasn’t a compelling enough response to stick with anyone visiting
the table.

 these questions, I came away full of ideas for how we can better sell FreeBSD--with
desktop use cases, but also the cool, compelling features we have. It wouldn’t take much to

2 of 3

Conference Report

Staffing the table

at an Open Source Project

is a great way to see how

much you know.

50FreeBSD Journal • January/February/March 2025

bring along some SBCs and show the same release FreeBSD running on them all—no con-
fig needed.

More Advocacy
Look back at the questions. Do you have your answers ready?
If you have been to a conference, or community event or seen a charity’s table in a mall,

you know the setting. What can we do to be better able to answer questions like these?
The table at an Open Source conference is a high-contact place where you get hours

of endless opportunities to interest people in FreeBSD. We came with stickers, mugs, and
cheat sheets, but the most success is going to come from lasting positive experiences we
can give people in these situations.

If you have an idea of how to better advocate for FreeBSD at conferences, please send
me an email (thj@freebsd.org) and we can start talking about selling FreeBSD to the Open
Source community.

TOM JONES is a FreeBSD committer interested in keeping the network stack fast.

Conference Report
3 of 3

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

mailto:thj@freebsd.org
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
mailto:maurer.jim@gmail.com

BSD Events taking place through September 2025
BY ANNE DICKISON
Please send details of any FreeBSD related events or events
that are of interest for FreeBSD users which are not listed here
to freebsd-doc@FreeBSD.org.

51FreeBSD Journal • January/February/March 2025

June 2025 FreeBSD Developer Summit
June 11-12, 2025
Ottawa, Canada
https://wiki.freebsd.org/DevSummit/202506

Join us for the June 2025 FreeBSD Developer Summit, co-located with BSDCan 2025, which
will take place in Ottawa, Canada. The two-day event takes place June 11-12, 2025, consisting
of developer discussion sessions, vendor talks, and working groups.

BSDCan 2025
June 11-14, 2025
Ottawa, Canada
https://www.bsdcan.org/2025/

BSDCan is a technical conference for people working on and with BSD operating systems
and related projects. It is a developers conference with a strong focus on emerging technol-
ogies, research projects, and works in progress. It also features Userland infrastructure proj-
ects and invites contributions from both free software developers and those from commer-
cial vendors.

EuroBSDCon 2025
September 25-28, 2025
Zagreb, Croatia
https://2025.eurobsdcon.org/

This yearly conference gives the exceptional opportunity to learn about the latest news from
the BSD world, witness contemporary deployment case studies, and personally meet other
users and companies using BSD-oriented technologies. EuroBSDCon is also a boiler plate for
ideas, discussions, and information exchange, which often turn into programming projects.

1 of 1

mailto:freebsd-doc@FreeBSD.org
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
https://wiki.freebsd.org/DevSummit/202506
https://www.bsdcan.org/2025/
https://2025.eurobsdcon.org/

https://2025.asiabsdcon.org/

https://www.freebsd.org/events/events.ics

	contents_button 1:
	contents_button 2:
	contents_button 3:
	contents_button 4:

