
42FreeBSD Journal • January/February/March 2025

1 of 5

TCP Connection Setup
The Transmission Control Protocol (TCP) is a connection-oriented transport protocol

providing a reliable bidirectional byte stream service. The TCP connection setup requires
three TCP segments to be exchanged, which is called a three-way handshake. The TCP end-
point initiating the TCP connection and sending the first TCP segment, the SYN segment,
is called the client. The TCP endpoint waiting for the first TCP segment is called the server
and responds to the received SYN segment with a SYN ACK segment. When the client re-
ceives this SYN ACK segment, it completes the handshake by sending an ACK segment.

The TCP handshake is not only used to synchronize the state between the two endpoints
including the initial sequence numbers for providing reliability, but also to negotiate the use
of TCP extensions via TCP options. With today’s Internet, the most widely deployed TCP
options during the handshake (contained in the SYN and SYN ACK segments) are:

1.	 The maximum segment size (MSS) option
The MSS option contains a 16-bit number (between 0 and 65535), which is the maxi-
mum number of payload bytes the sender of this option is willing to receive in a single
TCP segment. For this number, it is assumed that no options at the IP layer and the
TCP layer are used. In case such options are used, the number must be decremented
by the size of the options. This helps the TCP sender to avoid sending TCP segments
requiring fragmentation at the IP layer.

2.	The SACK-permitted option
This option announces that the sender can handle selective acknowledgments (SACK
options). This improves the performance in case of packet loss.

3.	The TCP Window Scale option
This option contains a natural number between 0 and 14. If both sides send this op-
tion, the receive window scaling is enabled. This allows the use of a larger receive win-
dow than would be allowed by the format of the TCP header, where the receive win-
dow is limited to 16 bits (and therefore 65535 bytes). This avoids the fact that the size
of the receiver window field in the TCP limits the throughput of a TCP connection.

4.	The TCP Timestamp option
This option contains two 32-bit numbers, which often encode some timing informa-
tion in millisecond granularity. It is used to improve the TCP performance.

BY RANDALL STEWART AND MICHAEL TÜXEN

The Handling of
SYN Segments in FreeBSD

43FreeBSD Journal • January/February/March 2025

TCP is specified using a state event machine. Initially, an endpoint is in the CLOSED state.
When the endpoint is willing to accept TCP connections (on the server side), the TCP end-
point is moved to the LISTEN state. When receiving the SYN segment from the client side
and replying with a SYN ACK segment, the endpoint enters the SYN RECEIVED state. Once
the TCP endpoint receives the ACK segment sent by the client, the TCP endpoint enters
the ESTABLISHED state. These states can be observed using the netstat or sockstat
command line tools.

The Application Programmers Interface (API) used to control TCP endpoints is the sock-
et API. Programs normally use a listening socket, which tells
the TCP implementation that it is OK to accept TCP con-
nections on this endpoint, and for each accepted TCP con-
nection the programs use a separate socket for each TCP
connection. Applications can set parameters on the listen-
ing socket and most of the time these settings are then in-
herited by the accepted sockets. This article focuses on the
TCP connection setup on the server side. It should be not-
ed that this functionality applies to all TCP stacks (default,
RACK, BBR, …).

SYN Flooding Attacks
When TCP was initially implemented, a new TCP endpoint

was created whenever a SYN segment was received for a TCP endpoint in the LISTEN state.
This required a memory allocation and resulted in a new TCP endpoint in the SYN RECEIVED
state. All necessary information including the information related to the TCP options re-
ceived in the SYN segment was stored in the TCP endpoint. This was done without any verifi-
cation of the information provided, the IP address, and the TCP port number.

This allowed an attacker to send many SYN segments to a server and the server would al-
locate TCP endpoints until it ran out of resources. Therefore, the attacker could perform a
denial-of-service attack, since once the server has no resources available anymore, it would
not accept SYN segments from valid clients. The attacker only needs to send SYN seg-
ments, in particular, the attacker would not respond to any SYN ACK segments received.
The attacker can even use spoofed IP addresses (IP addresses the attacker does not own).

The goal of this SYN flooding attack is that the receiver runs out of resources and is
therefore not able to provide the service it is intended to provide. In FreeBSD, there are two
mitigations implemented in the TCP stack for dealing with SYN flooding attacks:

1.	 Reducing the amount of memory allocated when a TCP endpoint moves from
CLOSED to SYN RECEIVED state. This is done by using the SYN cache described in
the next section.

2.	 Not allocating any memory when processing the incoming SYN segment. This is done
by using SYN cookies as described in the section following SYN cache.

SYN Cache
The initial implementation of the SYN cache was added to the FreeBSD source tree in

November 2001. It reduces the memory overhead of TCP endpoints in the SYN RECEIVED
state by not allocating a full TCP endpoint, but a TCP SYN cache entry (struct syncache
as defined in sys/netinet/tcp_syncache.h) instead. A TCP SYN cache entry is smaller

2 of 5

This article focuses on the
TCP connection setup on
the server side.

44FreeBSD Journal • January/February/March 2025

than a TCP endpoint and only allows storage of information relevant in the SYN RECEIVED
state. This information includes:

•	The local and remote IP address and TCP port number.
•	The information relevant for performing timer-based retransmissions of the SYN ACK

segment.
•	The local and remote TCP initial sequence number.
•	The MSS reported by the peer in the MSS option of the received SYN segment.
•	The local and remote window scaling shift values exchanged in the relevant window

scaling options of the SYN and SYN ACK segments.
•	Whether window scaling, timestamp, and SACK support were negotiated.
•	Accurate ECN state.
•	Additional IP layer information.
When a SYN segment is received for a listening endpoint, a SYN cache entry is allocated,

the relevant information is stored in it and a SYN ACK seg-
ment is sent in response. If SYN cookies are disabled and
there is a bucket overflow, the oldest SYN cache entry in the
bucket is tossed. If the corresponding ACK segment is re-
ceived, a full TCP endpoint is created with the data from the
SYN cache entry and then the SYN cache entry is freed. The
SYN cache also assures that the SYN ACK segment is re-
transmitted in case the corresponding ACK segment is not
received in time.

The sysctl-variable net.inet.tcp.syncookies (which
defaults to 1) control whether SYN cookies, as described in
the next section, will be used in combination with the SYN
cache to cover the case where no SYN cache entry can be al-
located or looked up.

The SYN cache is vnet specific and organized as a hash
table. The number of buckets is controlled by the loader tunable net.inet.tcp.syncache.
hashsize (default 512). The maximum number of SYN cache entries in each hash bucket is
controlled by the loader tunable net.inet.tcp.syncache.bucketlimit (default 30). There
is also an overall limit of SYN cache entries given by the loader tunable net.inet.tcp.syn-
cache.cachelimit (default is 15360 = 512 * 30). The number of currently used SYN cache
entries is reported by the read-only sysctl-variable net.inet.tcp.syncache.count.

There are additional sysctl-variables relevant to the SYN cache. These are:
•	net.inet.tcp.syncache.rst_on_sock_fail

Controls for sending an RST segment or not in case a socket can’t be created success-
fully (which defaults to 1).

•	net.inet.tcp.syncache.rexmtlimit
The maximum number of retransmissions of a SYN ACK segment (which defaults to 3).

•	net.inet.tcp.syncache.see_other
Control the visibility of the SYN cache entries (which defaults to 0).

The TCP SYN cache allows the server side to perform a fully functional handshake with a
minimized memory resource. There is no functional difference to using a full TCP endpoint
for TCP endpoints in the SYN RECEIVED state. Even tools like netstat or sockstat will re-
port the entries from the SYN cache.

3 of 5

When a SYN segment
is received for a listening
endpoint, a SYN cache
entry is allocated.

45FreeBSD Journal • January/February/March 2025

Supporting additional TCP options is not a problem, since the TCP SYN cache entry can
be expanded.

The sysctl-variable net.inet.tcp.syncookies_only (defaulting to 0) can be used to
disable the use of the SYN cache. In this case, only SYN cookies described in the next sec-
tion will be used.

SYN Cookies
An additional level of protection against SYN flooding attacks was added to the SYN

cache implementation in December 2001. Instead of allocating a smaller amount of mem-
ory when processing a received SYN segment, the relevant information is stored in a so-
called SYN cookie and sent to the client in the SYN ACK segment. Then the client is ex-
pected to reflect the SYN cookie in the ACK segment. When the ACK segment is finally
processed by the server, all relevant information is in the SYN cookie and the ACK seg-
ment. So, the server can create a TCP endpoint in the ES-
TABLISHED state. This way a SYN flooding attack does not
result in any memory exhaustion. However, the generation
of the SYN cookie mustn’t require too many CPU cycles. If
the SYN cookie generation is not cheap CPU-wise, it might
allow a denial-of-service attack: this time not against the
memory resource, but against the CPU resource.

The only field in the TCP header that can be chosen ar-
bitrarily by the server and is reflected by the client is the ini-
tial sequence number of the server. This field is a 32-bit in-
teger and therefore used as the SYN cookie.

In FreeBSD, these 32 bits are split into a 24-bit message
authentication code (MAC) and 8 bits, which are used as follows:

•	3 bits for encoding one of 8 MSS values: 216, 536, 1200, 1360, 1400, 1440, 1452, 1460. For
MSS values sent by the client in the MSS option not in this list, the largest value not ex-
ceeding the given one is used.

•	3 bits for encoding if the peer does not support window scaling or uses one of the 7
values: 0, 1, 2, 4, 6, 7, 8. If the client was sending a value not in the list, the largest value
not exceeding the given one is used.

•	1 bit for encoding whether the client sent the SACK-permitted option or not.
•	1 bit for selecting one of two keys.
The MAC uses a secret key, which is updated every 15 seconds. The current and the last

secret keys are kept around and used based on the bit in the SYN cookie for selecting the
secret key.

The computation of the MAC includes the local and remote IP addresses, the initial se-
quence number of the client, the above 8 bits, and some internal information. From the
MAC, 24 bits are generated and combined with the 8 bits from above, the SYN cookie is
constructed.

When the ACK segment of the three-way handshake is received by the server, the MAC
is verified. If that is successful, the TCP endpoint is created based on the information in the
SYN cookie, which provides an approximation of the MSS option, an approximation of the
window shift, and whether the client announced support for the SACK extension. All the
other relevant information must be recovered from the ACK segment. This recovered in-

4 of 5

The MAC uses a secret
key, which is updated
every 15 seconds.

46FreeBSD Journal • January/February/March 2025

formation includes the local and remote IP addresses and port numbers, the local and re-
mote initial sequence numbers whether the TCP timestamp option is used or not, and in
the case it is, what the current parameters are.

Comparison of SYN Cache and SYN Cookies
The advantage of SYN cookies compared to the SYN cache is very clear: no memory

allocation when a new SYN ACK segment is received. However, using SYN cookies also
has its downsides:

•	The MSS is approximated by 8 values, all smaller than or equal to 1460. Therefore, there
is no support for MTUs larger than 1500 bytes for IPv4.

•	The shift used for window scaling is approximated by 7 values, all smaller than or equal
to 8. This means that larger window shifts above 8 are not supported and thus the con-
nection will have a smaller window size.

•	No support for TCP options other than the ones widely deployed right now. This makes
it hard to support new TCP options used to negotiate new TCP features.

•	No retransmissions of the SYN ACK segment, if a SYN ACK segment is lost the end-
point initiating the connection will have to retry sending its SYN segment.

•	No visibility of TCP endpoints in the SYN RECEIVED state.
•	No support for IP-level information.
Using the SYN cache does not have any of these limitations and is transparent but re-

quires a memory allocation for each TCP endpoint in the SYN RECEIVED state.

Combined Usage of SYN Cache and SYN Cookies
Using only SYN cookies provides a better mitigation against SYN flooding attacks than

using the SYN cache, but it comes with the drawback of limited functionality. Therefore, the
default configuration of FreeBSD enables the SYN cache in combination with SYN cookies.
This means that when a received SYN segment is processed, a SYN cache entry is gener-
ated, and the SYN ACK segment being sent contains a SYN cookie. If a SYN cache buck-
et overflows, it is assumed that this happens due to an ongoing SYN flooding attack, and
therefore using the SYN cache is paused. During this time, only SYN cookies are used.

This additional functionality, introduced in September of 2019, gives the advantages of
the SYN cache during normal operation, but also the improved protection of SYN cookies
when a SYN flooding attack is going on.

RANDALL STEWART (rrs@freebsd.org) has been an operating system developer for over
40 years and a FreeBSD developer since 2006. He specializes in Transports including TCP
and SCTP but has also been known to poke into other areas of the operating system. He is
currently an independent consultant.

MICHAEL TÜXEN (tuexen@freebsd.org) is a professor at the Münster University of Applied
Sciences, a part-time contractor for Netflix, and a FreeBSD source committer since 2009.
His focus is on transport protocols like SCTP and TCP, their standardization at the IETF and
their implementation in FreeBSD.

5 of 5

mailto:rrs@freebsd.org
mailto:tuexen@freebsd.org

