
26FreeBSD Journal • January/February/March 2025

1 of 12

In Part 1 and Part 2, we implemented a simple character device driver that implemented sup-
port for basic I/O operations. In this final article in this series, we will explore how character
devices can provide backing store for memory mappings in user processes. Unlike the pre-

vious article, we will not be extending the echo device driver but will instead implement new
drivers to demonstrate memory mapping. These drivers can be found in the same repository
as the echo driver at https://github.com/bsdjhb/cdev_tutorial.

Memory Mappings in FreeBSD
To understand how memory mapping works in character devices, one must first under-

stand how the FreeBSD kernel manages memory mappings in general. FreeBSD’s virtual
memory subsystem is derived from the Mach virtual memory subsystem inherited from
4.4BSD. While FreeBSD’s VM has seen substantial changes over the past thirty years, the
core abstractions remain the same.

In FreeBSD, a virtual memory address space is represented by a virtual memory map
(struct vm_map). A VM map contains a list of entries (struct vm_map_entry). Each entry
defines the properties for a contiguous range of address space including the permissions
and the backing store. Virtual memory objects (struct vm_object) are used to describe
the backing store for mappings. A VM object has its own logical address space of pages. For
example, each regular file on disk is associated with a VM object where the logical address
of a page in the VM object corresponds to offsets within the file, and the contents of a logi-
cal page are the file contents at the given file offset. Each VM map entry identifies its back-
ing store as a range of logically contiguous pages starting at a specific offset from a single
VM object. Figure 1 shows how a single VM map entry can be used to map the .data section
from the C runtime library into a process’ address space.

Figure 1: Mapping of C Runtime Library .data Section

Each VM object is associated with a pager which provides a set of functions used to de-
termine the contents of the pages associated with a VM object. The vnode pager is used
for VM objects associated with regular files from both block-storage filesystems and net-

BY JOHN BALDWIN

Character Device
Driver Tutorial (Part 3)

27FreeBSD Journal • January/February/March 2025

work filesystems. Its functions read data from the associated file to initialize pages and write
modified pages back to the associated file. The swap pager is used for anonymous VM ob-
jects that are not associated with a regular file. Zero-filled pages are allocated on first use. If
the system runs low on memory, the swap pager writes less frequently used dirty pages to
swap until they are needed again.

Logical pages in VM objects are represented by a VM page (struct vm_page). During
boot, the kernel allocates an array of VM pages such that each physical page of RAM is as-
sociated with a VM page object. VM pages are mapped into address spaces using architec-
ture-specific page table entries (PTEs). Managed VM pages maintain a linked list of mappings
using architecture-specific structures called PV entries.
This list can be used to remove all the mappings for a
VM page by invalidating the associated PTEs so that a
VM page can be reused to represent a different logical
page, either for a different VM object or a different log-
ical page address within the same VM object.

Each invocation of the mmap(2) system call creates
a new VM map entry in the calling process. The argu-
ments to the system call provide various properties of
the new entry including the permissions, length, and
offset into the backing VM object. The file descrip-
tor argument is used to identify the VM object to map
into the calling process’ address space. To map memory from a character device, a process
passes an open file descriptor for the character device as the file descriptor argument to the
mmap() system call. The role of the character device driver is to decide which VM object is
used to satisfy a memory mapping request as well as the contents of the pages backing the
VM object.

Default Character Device Pager
4.4BSD included a device VM pager to support character device memory mappings.

This device pager is designed to map regions of physical memory that do not change while
the OS is running. For example, it can expose MMIO regions like a frame buffer directly to
userspace.

The device pager assumes that each page in a device VM object is mapped to a page of
physical address space. This page can be a page of RAM or associated with an MMIO re-
gion. Importantly, once a logical address in a device VM object is associated with a physical
page, that mapping cannot be changed. This assumption works both ways in that the de-
vice pager also assumes that once a page of physical address space is associated with a de-
vice VM object, that physical page can never be reused for any other purpose. As a result,
the VM pages used by the device pager are unmanaged (no PV entries). However, this also
means that the VM system is not easily able to find existing mappings of these VM pages to
revoke existing mappings. In particular, destroying a character device via destroy_dev(9)
does not revoke existing mappings.

The default character device pager uses the character device mmap method both to val-
idate mapping requests and to determine the physical address associated with each logical
page address. The mmap method should validate the offset and protection arguments. If
the offset is not a valid logical page address or the requested protection is not supported,

2 of 12

4.4BSD included a device
VM pager to support
character device memory
mappings.

https://man.freebsd.org/mmap/2
https://man.freebsd.org/destroy_dev/9

28FreeBSD Journal • January/February/March 2025

this method should fail by returning an error code. Otherwise, the method should store the
physical address for the requested offset in the physical address argument and return zero.
If the page should be mapped with a memory attribute other than VM_MEMATTR_DEFAULT,
the memory attribute should be returned on success as well. When a mapping is created,
the device pager invokes this method on each logical page address of the requested map-
ping to validate the request. For the first page fault of a logical page address, the device
pager invokes the mmap method to obtain the physical address and memory attribute of
the backing page.

Listing 1 shows the mmap method for a simple character device driver that uses the
default device pager. This device allocates a single page of RAM when loaded and saves
a pointer to this page in the si_drv1 field. Due to the limitations of the character device
pager, this driver cannot be unloaded. Example 1 demonstrates a few interactions with the
device once it is loaded using a maprw test program to read and write from a mapping of
the device.

Listing 1: Using the Default Device Pager

static int
mappage_mmap(struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr,
 int nprot, vm_memattr_t *memattr)
{
 if (offset != 0)
 return (EINVAL);

 *paddr = pmap_kextract((uintptr_t)dev->si_drv1);
 return (0);
}

Example 1: Using the /dev/mappage Device

maprw read /dev/mappage 16 | hexdump
0000000 0000 0000 0000 0000 0000 0000 0000 0000
0000010
jot -c -s “” 16 ‘A’ | maprw write /dev/mappage 16
maprw read /dev/mappage 16
ABCDEFGHIJKLMNOP

Mapping Arbitrary VM Objects
Due to the limitations of the default character device pager, FreeBSD has extended the

support for character device memory mappings. FreeBSD 8.0 introduced a new mmap_sin-
gle character device method. This method is called on every mmap() invocation that maps
a character device. The mmap_single method must validate the entire mmap() request in-
cluding the offset, size, and requested protection. If the request is valid, the method should
return a reference to a VM object to use for the mapping. The method can either create
a new VM object or return an additional reference to an existing VM object. If the mmap_
single method returns the ENODEV error (the default behavior), mmap() will use the default
character device pager.

3 of 12

29FreeBSD Journal • January/February/March 2025

The mmap_single method can also alter the offset (but not size) used for the mapping
when returning a VM object. This permits a character device to use the initial offset of a
mapping as a key to identify a specific VM object to map. For example, a driver might have
two internal VM objects and use offset 0 to map the first VM object, and an offset of
PAGE_SIZE to map the second VM object. For the second case, the mmap_single method
would reset the effective offset to 0 so that the resulting mapping starts at the beginning
of the second VM object.

However, a character device doesn’t have to use multiple VM objects to benefit from the
mmap_single method. The ability to use VM objects with other pagers can be useful. For
example, the physical pager creates VM objects backed by wired pages of physical RAM.
Unlike the default device pager, these pages are managed and can be safely freed when the
VM object is destroyed. Listing 2 updates the mappage device driver from earlier to use a
physical pager VM object instead of the default character device pager. This version of the
device driver can be safely unloaded since the VM object will persist after the driver is un-
loaded until all mappings have been destroyed.

Listing 2: Using the Physical Pager

static int
mappage_mmap_single(struct cdev *cdev, vm_ooffset_t *offset, vm_size_t size,
 struct vm_object **object, int nprot)
{
 vm_object_t obj;

 obj = cdev->si_drv1;
 if (OFF_TO_IDX(round_page(*offset + size)) > obj->size)
 return (EINVAL);

 vm_object_reference(obj);
 *object = obj;
 return (0);
}

static int
mappage_create(struct cdev **cdevp)
{
 struct make_dev_args args;
 vm_object_t obj;
 int error;

 obj = vm_pager_allocate(OBJT_PHYS, NULL, PAGE_SIZE,
 VM_PROT_DEFAULT, 0, NULL);
 if (obj == NULL)
 return (ENOMEM);
 make_dev_args_init(&args);
 args.mda_flags = MAKEDEV_WAITOK | MAKEDEV_CHECKNAME;
 args.mda_devsw = &mappage_cdevsw;

4 of 12

30FreeBSD Journal • January/February/March 2025

 args.mda_uid = UID_ROOT;
 args.mda_gid = GID_WHEEL;
 args.mda_mode = 0600;
 args.mda_si_drv1 = obj;
 error = make_dev_s(&args, cdevp, “mappage”);
 if (error != 0) {
 vm_object_deallocate(obj);
 return (error);
 }
 return (0);
}

static void
mappage_destroy(struct cdev *cdev)
{
 if (cdev == NULL)
 return;

 vm_object_deallocate(cdev->si_drv1);
 destroy_dev(cdev);
}

Per-Open State
In the first article in this series, we demonstrated support for per-instance data using the

si_drv1 field. Some character device drivers need to maintain a unique state for each open
file descriptor. That is, if a character device is opened multiple times, the driver wishes to
provide different behavior to each open reference.

FreeBSD provides this feature via a family of functions. Typically, a character device driver
creates a new instance of per-open state in the open method and associates that instance
with the new file descriptor by calling devfs_set_
cdevpriv(9). This function accepts a void pointer argu-
ment and a destructor callback function. The destruc-
tor is invoked to clean the per-open state when the last
reference to the file descriptor is closed. Other charac-
ter device switch methods call devfs_get_cdevpriv(9) to
retrieve the void pointer associated with the current file
descriptor. Note that this family of functions always op-
erates on the current file descriptor as determined im-
plicitly by the caller context. The driver does not pass an
explicit reference to a file descriptor to these functions.

Listing 3 shows the open and mmap_single meth-
ods as well as the cdevpriv destructor for a new memfd
character device driver. This simple driver provides similar functionality to the SHM_ANON ex-
tension in FreeBSD’s shm_open(2) implementation. Each open file descriptor of this device
is associated with an anonymous VM object. The VM object’s size grows, if necessary, when
it is mapped. The VM object can be shared with other processes by sharing the file descrip-

5 of 12

In the first article in this
series, we demonstrated
support for per-instance
data using the si_drv1 field.

https://man.freebsd.org/devfs_set_cdevpriv/9
https://man.freebsd.org/devfs_set_cdevpriv/9
https://man.freebsd.org/devfs_get_cdevpriv/9
https://man.freebsd.org/shm_open/2

31FreeBSD Journal • January/February/March 2025

tor, for example by passing the file descriptor over a UNIX domain socket. To implement
this, the driver allocates a new VM object in the open method and associates that VM ob-
ject with the new file descriptor. The mmap_single object retrieves the VM object for the
current file descriptor, grows it if necessary, and returns a reference to it. Finally, the destruc-
tor function drops the file descriptor’s reference on the VM object.

Listing 3: Per-Open Anonymous Memory

static int
memfd_open(struct cdev *cdev, int fflag, int devtype, struct thread *td)
{
 vm_object_t obj;
 int error;

 /* Read-only and write-only opens make no sense. */
 if ((fflag & (FREAD | FWRITE)) != (FREAD | FWRITE))
 return (EINVAL);

 /*
 * Create an anonymous VM object with an initial size of 0 for
 * each open file descriptor.
 */
 obj = vm_object_allocate_anon(0, NULL, td->td_ucred, 0);
 if (obj == NULL)
 return (ENOMEM);
 error = devfs_set_cdevpriv(obj, memfd_dtor);
 if (error != 0)
 vm_object_deallocate(obj);
 return (error);

}

static void
memfd_dtor(void *arg)
{
 vm_object_t obj = arg;

 vm_object_deallocate(obj);
}

static int
memfd_mmap_single(struct cdev *cdev, vm_ooffset_t *offset, vm_size_t size,
 struct vm_object **object, int nprot)
{
 vm_object_t obj;
 vm_pindex_t objsize;
 vm_ooffset_t delta;

6 of 12

32FreeBSD Journal • January/February/March 2025

 void *priv;
 int error;

 error = devfs_get_cdevpriv(&priv);
 if (error != 0)
 return (error);
 obj = priv;

 /* Grow object if necessary. */
 objsize = OFF_TO_IDX(round_page(*offset + size));
 VM_OBJECT_WLOCK(obj);
 if (objsize > obj->size) {
 delta = IDX_TO_OFF(objsize - obj->size);
 if (!swap_reserve_by_cred(delta, obj->cred)) {
 VM_OBJECT_WUNLOCK(obj);
 return (ENOMEM);
 }
 obj->size = objsize;
 obj->charge += delta;
 }

 vm_object_reference_locked(obj);
 VM_OBJECT_WUNLOCK(obj);
 *object = obj;
 return (0);
}

Extended Character Device Pagers
The mmap_single method mitigates some of the limitations of the default character de-

vice pager by permitting a character device to use VM objects backed by any pager as well
as permitting a character device to associate different VM objects with different offsets.
However, some limitations remain. The device pager is unique among other pagers in that
it can map physical addresses that are not associated with physical RAM such as MMIO re-
gions. Due to its use of unmanaged pages, there is no way to revoke mappings of the device
pager nor a way for a driver to know if all mappings have been removed. FreeBSD 9.1 intro-
duced a new interface to the device pager that provides solutions to both problems.

The new interface requires character device drivers to explicitly create device VM objects.
These VM objects are then used by the mmap_single method to provide a backing store
for mappings. In the new interface, the mmap character device method is replaced by a
new method structure (struct cdev_pager_ops). This structure includes methods invoked
when a VM object is created (cdev_pg_ctor), a page fault requests a page from a VM ob-
ject (cdev_pg_fault), and a VM object is destroyed (cdev_pg_dtor). VM objects using the
extended device pager are created by calling cdev_pager_allocate(). The first argument
to this function is an opaque pointer stored in the handle member of the new VM object.
This pointer is also passed as the first argument to the constructor and destructor pag-
er methods. The second argument to cdev_pager_allocate() is the object type, either

7 of 12

33FreeBSD Journal • January/February/March 2025

OBJT_DEVICE or OBJT_MGTDEVICE. The third argument is a pointer to a struct cdev_
pager_ops instance.

The cdev_pager_allocate() function only creates a single VM object for each opaque
pointer. If the same opaque pointer is passed to a subsequent call to cdev_pager_
allocate(), the function will return a pointer to the existing VM object instead of creating a
new one. In this case, the VM object’s reference count is increased, so cdev_pager_
allocate() always returns a new reference to the returned VM object.

Let’s make use of this interface to extend the original version of the mappage driver from
Listing 1 so that it can be safely unloaded while there are no active mappings. In this case,
we will use an OBJT_DEVICE VM object. This still uses
unmanaged mappings of a single wired page allocated
when the driver is loaded. However, there is now addi-
tional state needed to determine if that allocated page
is in use, so this version of the driver defines a softc
structure containing the pointer to the page, a bool-
ean variable to track if the page is actively mapped,
a boolean to track if the driver is being unloaded (in
which case new mappings are disallowed), and a mutex
to guard access to the boolean variables. A pointer to
the softc structure is stored in the si_drv1 field of the
character device and is also used as the opaque handle
for the VM object. The mmap_single character device
method validates each mapping request (including failing requests while an unload is pend-
ing) and calls cdev_pager_allocate() to obtain a reference to the VM object mapping the
wired page. Note that the mmap_single method doesn’t have to handle the cases of cre-
ating a new VM object or reusing an existing VM object separately. The constructor pager
method sets the boolean mapped softc member to true. Once the last mapping of the VM
object is removed and the VM object is destroyed, the destructor pager method is called
which sets the mapped softc member to false. The mappage_destroy() function fails to un-
load with the EBUSY error if the mapped member is true when an unload is requested.

The page fault pager method is more complex than the mmap character device meth-
od it replaces. The page fault method works more directly with the VM system and how a
fault is normally handled by VM pagers. When a page fault occurs, the VM system allocates
a free page of RAM and invokes a pager method to fill that page with the appropriate con-
tents. The swap and physical pagers zero new pages in this method, while the vnode pag-
er reads the appropriate contents from the associated file. The default device pager takes
a different route. Since it is generally designed to map non-RAM addresses such as MMIO
regions, the default device pager allocates a “fake” VM page tied to the physical address re-
turned by the mmap method and replaces the new VM page allocated by the VM system
with the “fake” VM page (the new VM page is released back to the system as a free page).
The page fault pager method allows a driver to implement either approach by passing in a
pointer to the new VM page allocated by the VM system. The page fault pager method is
responsible for either filling that page with suitable content or replacing it with a “fake” VM
page. For our driver, we compute the physical address of our wired page the same as before
but use that physical address to construct a “fake” VM page.

Listing 4 shows the mmap_single character device method, the three device pager meth-

8 of 12

The cdev_pager_allocate()
function only creates a
single VM object for each
opaque pointer.

34FreeBSD Journal • January/February/March 2025

ods, and the mappage_destroy() function called during module unload. In example 2, we
suspend the maprw test program while it has the page from the mappage device mapped
and attempt to unload the driver which fails. After resuming the test program and letting it
unmap the device by exiting, the driver is unloaded successfully.

Listing 4: Using the Extended Device Pager

static struct cdev_pager_ops mappage_cdev_pager_ops = {
 .cdev_pg_ctor = mappage_pager_ctor,
 .cdev_pg_dtor = mappage_pager_dtor,
 .cdev_pg_fault = mappage_pager_fault,
};

static int
mappage_mmap_single(struct cdev *cdev, vm_ooffset_t *offset, vm_size_t size,
 struct vm_object **object, int nprot)
{
 struct mappage_softc *sc = cdev->si_drv1;
 vm_object_t obj;

 if (round_page(*offset + size) > PAGE_SIZE)
 return (EINVAL);

 mtx_lock(&sc->lock);
 if (sc->dying) {
 mtx_unlock(&sc->lock);
 return (ENXIO);
 }
 mtx_unlock(&sc->lock);

 obj = cdev_pager_allocate(sc, OBJT_DEVICE, &mappage_cdev_pager_ops,
 OFF_TO_IDX(PAGE_SIZE), nprot, *offset, curthread->td_ucred);
 if (obj == NULL)
 return (ENXIO);

 /*
 * If an unload started while we were allocating the VM
 * object, dying will now be set and the unloading thread will
 * be waiting in destroy_dev(). Just release the VM object
 * and fail the mapping request.
 */
 mtx_lock(&sc->lock);
 if (sc->dying) {
 mtx_unlock(&sc->lock);
 vm_object_deallocate(obj);
 return (ENXIO);
 }

9 of 12

35FreeBSD Journal • January/February/March 2025

 mtx_unlock(&sc->lock);

 *object = obj;
 return (0);
}

static int
mappage_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
 vm_ooffset_t foff, struct ucred *cred, u_short *color)
{
 struct mappage_softc *sc = handle;

 mtx_lock(&sc->lock);
 sc->mapped = true;
 mtx_unlock(&sc->lock);

 *color = 0;
 return (0);
}

static void
mappage_pager_dtor(void *handle)
{
 struct mappage_softc *sc = handle;

 mtx_lock(&sc->lock);
 sc->mapped = false;
 mtx_unlock(&sc->lock);
}

static int
mappage_pager_fault(vm_object_t object, vm_ooffset_t offset, int prot,
 vm_page_t *mres)
{
 struct mappage_softc *sc = object->handle;
 vm_page_t page;
 vm_paddr_t paddr;

 paddr = pmap_kextract((uintptr_t)sc->page + offset);

 /* See the end of old_dev_pager_fault in device_pager.c. */
 if (((*mres)->flags & PG_FICTITIOUS) != 0) {
 page = *mres;
 vm_page_updatefake(page, paddr, VM_MEMATTR_DEFAULT);
 } else {
 VM_OBJECT_WUNLOCK(object);

10 of 12

36FreeBSD Journal • January/February/March 2025

 page = vm_page_getfake(paddr, VM_MEMATTR_DEFAULT);
 VM_OBJECT_WLOCK(object);
 vm_page_replace(page, object, (*mres)->pindex, *mres);
 *mres = page;
 }
 vm_page_valid(page);
 return (VM_PAGER_OK);
}

...

static int
mappage_destroy(struct mappage_softc *sc)
{
 mtx_lock(&sc->lock);
 if (sc->mapped) {
 mtx_unlock(&sc->lock);
 return (EBUSY);
 }
 sc->dying = true;
 mtx_unlock(&sc->lock);

 destroy_dev(sc->dev);
 free(sc->page, M_MAPPAGE);
 mtx_destroy(&sc->lock);
 free(sc, M_MAPPAGE);
 return (0);
}

Example 2: Safely Unloading via the Extended Device Pager

maprw write /dev/mappage 16
^Z
Suspended
kldunload mappage
kldunload: can’t unload file: Device busy
fg
maprw write /dev/mappage 16
maprw: empty read
kldunload mappage

The extended device pager interface also adds a new type of device pager. The OBJT_
MGTDEVICE pager differs from OBJT_DEVICE in that it always uses managed pages for map-
pings instead of unmanaged pages. This means that mappings for a page can be forceful-
ly revoked even while the page is mapped. For fictitious pages mapping non-RAM pages,
“fake” VM pages must be explicitly created before using them in the pager via the vm_phys_
fictitious_reg_range() function.

11 of 12

37FreeBSD Journal • January/February/March 2025

Conclusion
In this article, we dove into some more unusual use cases for character devices including

memory mappings and per-open state. Thanks for reading this series of articles. Hopefully,
it was a useful introduction to character device drivers in FreeBSD.

JOHN BALDWIN is a systems software developer. He has directly committed chang-
es to the FreeBSD operating system for over twenty years across various parts of the ker-
nel (in-cluding x86 platform support, SMP, various device drivers, and the virtual memory
subsys-tem) and userspace programs. In addition to writing code, John has served on the
FreeBSD core and release engineering teams. He has also contributed to the GDB debug-
ger. John lives in Ashland, Virginia with his wife, Kimberly, and three children: Janelle, Evan,
and Bella.

12 of 12

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number
of applications, off ers powerful solutions, and cutting edge
features. The best part? It’s FREE of charge and comes with
full source code.
Did you know that working with a mature, open source
project is an excellent way to gain new skills, network
with other professionals, and diff erentiate yourself in a
competitive job market? Don’t miss this opportunity to work
with a diverse and committed community bringing about a
better world powered by FreeBSD.

The FreeBSD Community is proudly supported by

The FreeBSD Project is looking for

• Programmers • Testers

• Researchers • Tech writers

• Anyone who wants to get involved

Find out more by

Checking out our website
freebsd.org/projects/newbies.html

Downloading the Software
freebsd.org/where.html

We’re a welcoming community looking
for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don’t forget to check out the latest
grant opportunities at
freebsdfoundation.org

Help Create the Future.
Join the FreeBSD Project!

