
38FreeBSD Journal • January/February/March 2025

In the last column, we created a simple circuit that blinked the LEDs on the board, and we
learned two different ways to load this circuit into the FPGA. Sadly, when we loaded our
circuit, the CPU stopped running. Furthermore, while this is mildly interesting, there is no

interaction with the CPUs on the chip. In this column, we’ll take a little more complex step
into Vivado, learn how to keep our CPU running when we load circuits, and explore the
GPIO system in FreeBSD.

Previously when we used either U-boot or xbit2bin and /dev/devcfg under
FreeBSD we saw that FreeBSD halted. What I think happens is the processor’s system
stops running. Turns out the circuit FPGA.bit
file we used didn’t include configuration infor-
mation for the processor system. In this install-
ment, we’ll fix this.

I vacillated over how to present the informa-
tion in this episode. From a learning standpoint,
the most natural way to do this is probably using
Vivado’s GUI. On the other hand, GUIs do not
lend themselves well to automation for the obvi-
ous reason that they require a human to run the
GUI. Further, it is difficult and tedious to describe
the GUI steps. Fortunately, Vivado has two fea-
tures that make it relatively easy to work around
this. When working with the GUI, the Vivado tool produces a .jou file which is a journal of all
the TCL commands that the GUI is executing under the hood. Vivado also provides the TCL
command write_project_tcl which can be used to recreate the project file that Vivado
creates when you use the GUI. I generally prefer using the .jou file as I find the scripts more
compact and understandable and if I run the scripts I can then either start the GUI or use
write_project_tcl to write a project script. Scripts also seem a more natural fit for a revi-
sion control system like git.

If we look at “Figure 1-1: Zynq-7000 SoC Overview Figure 1-1: Zynq-7000 SoC Overview”
from “UG585: Zynq-7000 SoC Technical Reference Manual” we can see that there are a

BY CHRISTOPHER R. BOWMAN

1 of 4

Embedded FreeBSD:
Learning to Walk–Interfacing
to the GPIO System

 In this column, we’ll take
a little more complex step
into Vivado.

39FreeBSD Journal • January/February/March 2025

variety of peripheral blocks (UART, I2C, SPI, etc.) which can be connected via a multiplex-
or to external pins. Section “1.2.3 I/O Peripherals” of the same manual details a bit more
of the capabilities. For our purpose, now, we are just going to take note that we can route
signals from the gpio device out to pins on the chip with a fair amount of flexibility. If
we also look at the Arty Z7 Reference Manual section 12 “Basic I/O,” we can see that the
green LEDs on the board are connected to chip pins which sink to ground via current set-
ting resistors. If we can set these pins high, the
LEDs will light up, and conversely, if the pins are
set low, the LEDs turn off.

To toggle these pins, we’ll use the Vivado soft-
ware to route the GPIO device outputs to the
LED pins which will allow the GPIO device to con-
trol them. I didn’t know it when I started this jour-
ney, but FreeBSD has a GPIO subsystem, and
somebody has even kindly written a driver to
make this all usable from user space.

To get started, clone the git repo onto a Linux
host with the Vivado tools (I showed how to set
up a bhyve in a previous installment) and type
make at the top of the repo. If you have the Viva-
do tools in your path and everything works right,
it should run Vivado and pull in a script that will
instantiate the processor subsystem and connect
the first four EMIO pins of the GPIO device to the LED pins. The inclusion of the proces-
sor subsystem will fix the problem we previously had with the processors stopping when we
programmed the device with a bit stream.

Look for the zynq_gpio_leds.bit file built by running make in the top level of the git
repo. Program this into the chip as we did last time using the xbit2bin program:

xbit2bin zynq_gpio_leds.bit

You should see exactly nothing happen. Not very exciting, but at least the processor
should still be running.

Now, we need to use FreeBSD’s GPIO subsystem. Typing man gpioctl gives a nice
summary of what is possible.

As root, we can run the gpioctl program to list the available pins:

gpioctl -f /dev/gpioc0 -l

Didn’t work, did it? Yep, I was a little surprised by this, too. Looking at the GPIO source in
/usr/src/sys/arm/xilinx/zy7_gpio.c I see there are probe and attach functions in the
driver, but looking at my ARTYZ7 system dmesg output, I don’t see anything indicating the
device was found. Looking more closely at the probe function:

static int
zy7_gpio_probe(device_t dev)
{

 if (!ofw_bus_status_okay(dev))
 return (ENXIO);

2 of 4

FreeBSD has a GPIO
subsystem, and
somebody has even
kindly written a driver
to make this all usable
from user space.

https://reference.digilentinc.com/reference/programmable-logic/arty-z7/reference-manual?_gl=1*c286n6*_ga*MTg4NjczMDI1NC4xNzExMzUwMjY2*_ga_JSPEFFCPBT*MTcxMjM2NzMxNi4yLjAuMTcxMjM2NzMzMy40My4wLjA.
https://github.com/christopher-bowman/zynq_gpio_leds

40FreeBSD Journal • January/February/March 2025

 if (!ofw_bus_is_compatible(dev, “xlnx,zy7_gpio”))
 return (ENXIO);

 device_set_desc(dev, “Zynq-7000 GPIO driver”);
 return (0);
}

I can see that just about the only thing required to find the device is having the function
ofw_bus_is_compatible(dev, “xlnx,zy7_gpio”) return true.

In embedded systems, like most ARM systems, the hardware generally isn’t self-identify-
ing like a modern PCIe bus. The software can’t auto-identify what hardware is present and
where its control registers are in the memory address space. For this reason, many operat-
ing systems use FDTs (Flattened Device Trees) to describe their device memory map. FDTs
are text files that describe information about an embedded system including, among other
things, what devices are present and where they are in memory. This allows the software to
work with a variety of devices without needing to hard code information. The same kernel
can often work with slightly different devices just by using a different FDT. FDTs are trans-
lated from DTS files (Device Tree Source) into DTB (Device Tree Binary) files via a tool called
dtc, the device tree compiler. dtc has options that allow you to compile a DTS or decompile
a DTB. The latter comes in very handy. For instance, you can ask the kernel for the DTB it’s
using and have dtc turn it into text with:

sysctl -b hw.fdt.dtb | dtc -I dtb -O dts

If we look for the gpio section, we see (among other things) this:

 gpio@e000a000 {
 compatible = “xlnx,zy7_gpio”;
 };

The compatible string in the DTB isn’t what the driver is expecting, so it assumes the de-
vice isn’t present. If you look at the FreeBSD boot output, you’ll see that the kernel is using
the DTB from the EFI firmware emulation that U-boot is providing. We could change this
by fixing what U-boot is providing, but that would require patching and recompiling u-boot.
Instead, FreeBSD provides the capability to load a DTB file at the kernel loader prompt or
using a loader.conf variable. You can load a DTB file from the loader using the following
/boot/loader.conf variables:

fdt_name=”/boot/dtb/zynq-artyz7.dtb”
fdt_type=”dtb”
fdt_load=”YES”

This works but there is also a third way. Turns out you can create FDT/DTS overlays which
are patches to an FDT/DTS/DTB. We just need a DTS overlay that adds the correct compati-
ble string and we should be good to go. Here is the heart of the DTS overlay I’ve included in
the dts directory with a Makefile from the project repo:

&{/axi/gpio@e000a000} { compatible = “xlnx,zy7_gpio”; };

We may look at FDT files in more detail in a future column, so I won’t explain it here. In-
stead, I’ll just give you a flavor of the file. Once you’ve built the DTB overlay, take the generat-

3 of 4

41FreeBSD Journal • January/February/March 2025

ed DTB and put it in /boot/dtb/overlays, and add the following to /boot/loader.conf:

fdt_overlays=”artyz7_gpio_overlay.dtb”

Reboot and note the new dmesg output:

gpio0: <Zynq-7000 GPIO driver> mem 0xe000a000-0xe000afff irq 5 on simplebus0

Now let’s try that gpioctl command again and you should see a line like this among
others:

pin 64: 0 EMIO_0<IN>

We need to tell the GPIO subsystem to configure the pin as output, and then we can try
toggling it:

gpioctl -f /dev/gpioc0 -c EMIO_0 OUT
gpioctl -f /dev/gpioc0 -t EMIO_0

I’ll wait. Try not to stand up and dance when the light comes on. See if you can figure out
how to turn on the other LEDs and then run the script in scripts/blink.sh with an argu-
ment of 2. You should see the LEDs blink as they count in binary.

If you’ve got questions, comments, feedback, or flames on any of this I’d love to hear
from you. You can contact me at articles@ChrisBowman.com.

CHRISTOPHER R. BOWMAN first used BSD back in 1989 on a VAX 11/785 while working
2 floors below ground level at the Johns Hopkins University Applied Physics Laborato-
ry. He later used FreeBSD in the mid 90’s to design his first 2 Micron CMOS chip at the
University of Maryland. He’s been a FreeBSD user ever since and is interested in hard-
ware design and the software that drives it. He has worked in the semiconductor design
automation industry for the last 20 years.

4 of 4

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

mailto:articles@ChrisBowman.com

